Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Politykę Prywatności. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Merci !

Le formulaire a été soumis avec succès.
Vous trouverez de plus amples informations dans votre boîte aux lettres.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

Oprogramowanie do badań medycznych: redukcja ręcznej obsługi danych o 60%

Firma Innowise przeprowadziła wieloaspektową oprogramowanie do badań medycznych pour un fournisseur d'ontologies, incorporant la recherche pilotée par l'IA, des tableaux de bord personnalisés et l'intégration d'ontologies dans l'infrastructure d'une société de recherche chimique.

Klient

Branża
Opieka zdrowotna
Région
UE
Klient od
2022

Nasz klient, wiodący podmiot w dziedzinie ontologii, działa w Niemczech. Firma specjalizuje się w opracowywaniu technologii, które wyodrębniają informacje z ustrukturyzowanych i nieustrukturyzowanych danych, przekształcając je w wiedzę na potrzeby badań, odkryć i podejmowania decyzji. Jej doświadczenie obejmuje chemię, biologię i pokrewne dziedziny nauki. Firma posiada rozległy system ontologii, ustrukturyzowaną strukturę wzajemnie powiązanych terminów i pojęć naukowych.

Szczegółowe informacje o kliencie nie mogą zostać ujawnione zgodnie z warunkami umowy NDA.

Wyzwanie

Ograniczone funkcje wyszukiwania i adnotacji, złożoność tworzenia pulpitów nawigacyjnych i ręczna obsługa dokumentów w starszym systemie.

Główne wyzwania, przed którymi stanął nasz klient, koncentrowały się wokół trzech głównych obszarów: rozwój front-endu dla ich systemu wyszukiwania opartego na sztucznej inteligencji, automatyzującego wizualizacji danych dans les logiciels de recherche médicale, et l'intégration de leurs ontologies dans le système d'une société de recherche chimique existante :

  • Développement de l'interface du système de recherche alimenté par IA : Le principal défi du client était d'améliorer l'interface de son système de recherche basé sur une ontologie, conçu pour les plateformes web et mobiles. Ce système faisait partie intégrante de la gestion d'une vaste collection d'articles scientifiques. La mise à niveau devait faciliter les capacités de recherche, la visualisation des sources et l'annotation des concepts et des termes scientifiques dans divers formats de documents. Les limites du système précédent, notamment l'absence de filtres de recherche et de fonctionnalités d'annotation, empêchaient la pleine utilisation de leur base de données scientifique.
  • Automatyzacja wizualizacji danych na potrzeby badań naukowych:< Klient stanął przed wyzwaniem zautomatyzowania wizualizacji danych na potrzeby analizy danych naukowych. Wymagany system musiał wspierać naukowców zajmujących się danymi w identyfikowaniu, przygotowywaniu i walidacji danych, a także w tworzeniu informacyjnych pulpitów nawigacyjnych. Miało to kluczowe znaczenie dla klasyfikowania i łączenia jednostek medycznych, identyfikowania celów molekularnych dla nowych farmaceutyków i ułatwiania badań nad chorobami.
  • Integracja systemu ontologii w badaniach chemicznych: L'intégration des ontologies du client dans le système existant d'une société de recherche chimique a représenté un défi unique. L'ancien système de l'entreprise dépendait fortement de processus manuels pour le traitement des documents et la saisie des données. Notre tâche consistait à moderniser ce système en automatisant l'analyse des documents et le chargement des bases de données, en développant une nouvelle interface et en mettant en place un système de gestion des ontologies system back-end. System ten musiał obsługiwać dwie różne role użytkowników: osoby odpowiedzialne za przesyłanie i edycję dokumentów oraz administratorów przeglądających i potwierdzających te wpisy.

Wdrożenie

System wyszukiwania oparty na sztucznej inteligencji, zautomatyzowane pulpity nawigacyjne i płynna integracja ontologii w badaniach chemicznych

L'équipe d'Innowise s'est concentrée sur trois aspects clés du projet :

Ulepszanie systemu wyszukiwania w oprogramowaniu do badań medycznych

Nasz zespół skupił się na opracowaniu i ulepszeniu wyspecjalizowanego systemu wyszukiwania opartego na sztucznej inteligencji – kluczowego podsystemu w ramach większej struktury, zaprojektowanego dla interfejsów internetowych i mobilnych. Zadanie to obejmowało wiele ulepszeń technicznych i funkcjonalnych:

  • Zaawansowane wyszukiwanie dokumentów: Umożliwiliśmy systemowi przeprowadzanie dogłębnych wyszukiwań w różnych formatach dokumentów z ogromnego repozytorium dokumentów. System umożliwił użytkownikom lokalizowanie dokumentów, przeglądanie źródeł wewnętrznych i zewnętrznych oraz identyfikowanie kluczowych pojęć naukowych i adnotacji wyróżnionych w tych dokumentach.
  • Adnotacje i kategoryzacja: Krytyczną funkcją była możliwość wybierania przez użytkowników określonych słów lub biletów w dokumentach i przypisywania ich do odpowiednich domen w celu adnotacji. Zintegrowaliśmy funkcje sztucznej inteligencji oparte na GPT, aby pomóc użytkownikom w prawidłowym dodawaniu adnotacji i kategoryzowaniu każdego terminu lub jednostki.
  • Proces zgłaszania i recenzowania: Po wprowadzeniu zmian lub dodaniu nowych informacji do dokumentu, system ułatwiał proces weryfikacji. Użytkownicy mogli przesyłać te zmiany, które następnie były wysyłane do administratora w celu przypisania statusu i zatwierdzenia nowych adnotacji, komentarzy lub kategoryzacji.
  • Funkcje zapytań i analiz: Użytkownicy mogą teraz wybierać dokumenty z dużej bazy danych i dodawać je do zbiorczego koszyka. Następnie mogą przeszukiwać te dokumenty za pomocą paska wyszukiwania w Analizatorze, zadając konkretne pytania lub żądając podsumowań i analiz na podstawie Technologia GPT.
  • Tworzenie niestandardowych filtrów: Nasz programista stworzył zaawansowane filtry do wyszukiwania dokumentów, dostosowane do różnych typów źródeł.
  • Wyzwania związane z przeglądarką dokumentów: Jednym ze złożonych zadań było opracowanie przeglądarki dokumentów zdolnej do wyświetlania zaznaczonych adnotacji na dokumentach PDF. Wymagało to skomplikowanej koordynacji back-endowej w celu poprawnego nakładania adnotacji.
  • Przegląd starszego kodu i architektury: Zajęliśmy się wyzwaniami związanymi ze starszym kodem i brakiem struktury architektonicznej, zapewniając, że system został zbudowany na solidnych, nowoczesnych fundamentach technologicznych.
  • Integracja wielu wersji GPT: Nasz zespół ulepszył system o wiele wersji GPT (3.5, 4, Davinci), umożliwiając bardziej wszechstronną analizę dokumentów.
  • Integracja LLM: Innowise skupił się na rozwoju LLM, który pozwala użytkownikom na wprowadzanie zapytań w języku naturalnym. Po przekonwertowaniu zapytań na żądania zaplecza, mogą one zostać wysłane na serwer.

Automatyzacja pulpitu nawigacyjnego w nauce o danych

Naszym programistom zespół data science s'est concentrée sur l'automatisation de la visualisation des données par le biais de tableaux de bord, un élément crucial pour la recherche du client dans l'identification de cibles moléculaires pour de nouveaux traitements pharmaceutiques. Les principales maladies étudiées étaient l'obésité et les maladies musculaires.

  • Tworzenie pulpitu nawigacyjnego: L'objectif de l'équipe était de créer des tableaux de bord pour visualiser les données pharmaceutiques. Pour ce faire, elle a dû traiter de vastes ensembles de données, c'est-à-dire un grand nombre d'articles médicaux annotés avec des identifiants et des métadonnées uniques, afin de former des tableaux GBQ de grande taille. 

  • Wizualizacja danych: Korzystanie z Looker StudioPrzekształciliśmy te duże tabele danych w mniejsze, łatwiejsze w zarządzaniu formaty do tworzenia pulpitów nawigacyjnych. Ten etap wizualizacji był niezbędny, aby eksperci mogli lepiej przeglądać i filtrować dane.

  • Automatyzacja pulpitu nawigacyjnego: Po zatwierdzeniu przez ekspertów medycznych zautomatyzowaliśmy tworzenie pulpitu nawigacyjnego przy użyciu technik inżynierii danych. Obejmowało to wykorzystanie repozytoriów zawierających skrypty SQL do pobierania wymaganych informacji. Skrypty te zostały zaplanowane do uruchamiania w określonych odstępach czasu, zapewniając aktualność pulpitów nawigacyjnych z najnowszymi wynikami badań.

  • Ciągłe aktualizacje i integracja: Nasze rozwiązanie pozwoliło na ciągłą integrację nowych istotnych publikacji z pulpitami nawigacyjnymi. Ten dynamiczny proces aktualizacji był ułatwiany przez Google Cloud Functions. Dzięki temu pulpity nawigacyjne były aktualizowane o najnowsze dane.

  • Zarządzanie zapytaniami: Obsługiwaliśmy zapytania poprzez duże tabele, wyciągając konkretne informacje na podstawie zapytań wyszukiwania. Następnie zespół wizualizował te statystyki na pulpitach nawigacyjnych i identyfikował wszelkie problemy w zapytaniach wyszukiwania.

Integracja ontologii w badaniach chemicznych

Notre projet consistait à intégrer les ontologies de notre client dans le logiciel de gestion de laboratoire d'une entreprise de recherche chimique. Cette tâche impliquait plusieurs étapes clés pour moderniser et automatiser leur système obsolète :

  • Analiza i badania systemowe: Nous avons commencé par une analyse et une recherche approfondies du système existant du client. Ce système Oprogramowanie do zarządzania laboratorium, używane głównie do przechowywania raportów i wyników badań, było oparte na starszym oprogramowaniu. Java wersje i technologie JSP.
  • Opracowanie nowego interfejsu i zaplecza: Nasze podejście obejmowało opracowanie nowego interfejsu i systemu zaplecza w celu zautomatyzowania procesu analizy dokumentów i aktualizacji bazy danych, który wcześniej był wykonywany ręcznie.
  • Typy użytkowników i funkcje: Zaprojektowaliśmy system z myślą o dwóch różnych typach użytkowników:
  • Przesyłający dokument: Naukowcy, którzy dodają dokumenty do systemu. Po dodaniu adnotacji do dokumentu pojawia się on na specjalnej stronie, na której przesyłający może przejrzeć wyniki, dokonać edycji i potwierdzić przesłanie do bazy danych.
  • Administrateur : Odpowiedzialny za przeglądanie i potwierdzanie dodanych dokumentów. Rola ta obejmuje kompleksowy przegląd dokumentów, z możliwością edycji, zatwierdzania lub wprowadzania zmian przed ostatecznym wprowadzeniem do bazy danych.
  • Rozwój back-endu i przegląd starszego kodu: Nasz programista podjął się zadania przebudowy istniejącego kodu. Wiązało się to z pisaniem stron JSP zgodnie ze specyfikacją klienta i rozwijaniem funkcji zaplecza (żądania, odpowiedzi, przetwarzanie danych i wprowadzanie danych do bazy danych).
  • Rozwój interfejsu administratora: Opracowaliśmy również część administracyjną systemu, w której administrator (zazwyczaj kierownik działu badawczego) otrzymuje powiadomienie z linkiem do interfejsu wyświetlającego informacje z bazy danych.
  • Integracja interfejsu API ontologii: Le cœur de notre solution consistait à intégrer l'API de l'ontologie dans le logiciel de gestion de laboratoire du client. Cette API a servi de point d'envoi des requêtes liées aux documents et de réception des réponses, qui ont ensuite été traitées et affichées par le biais de l'interface avant d'être envoyées à la base de données du client.
  • Obsługa dokumentów i danych: Dans ce système, les documents téléchargés dans le système ontologique étaient traités et les données obtenues étaient enregistrées dans la base de données de recherche chimique de l'entreprise. Cela a permis l'analyse automatique des documents et la récupération d'informations importantes sur les composés chimiques.
  • Rozwój w pełnym zakresie: Nasz programista pracował jako inżynier full-stack, zajmując się zarówno aspektami front-end, jak i back-end oraz zapewniając płynną integrację wszystkich komponentów systemu.

Technologie

Języki programowania

JavaScript, TypeScript, Java

Front-end

React, react-pdf, Redux, Redux-thunk, React-redux, Primereact, SASS, Lodash, Axios, FileSaver, GPT-Tokenizer

Back-end

Spring Boot, Java z bibliotekami Lucene, Stardog

Nauka o danych i analityka

Python (Pandas, Numpy, Plotly, Matplotlib), GCP (Google Big Query, Google Cloud Storage, Cloud Run), Looker, Data Studio, Apache Solr, niestandardowe narzędzia do przetwarzania i wizualizacji danych.

Proces

Nasze podejście do procesu rozwoju było metodyczne i zgodne z zasadami Agile, co zapewniło elastyczność i ciągłe doskonalenie.

Au départ, nous avons mené des recherches approfondies pour comprendre les besoins du client et les systèmes existants afin de produire un document détaillé sur la vision et la portée du projet. Sur la base des résultats initiaux, nous avons procédé à la conception et au développement des fonctionnalités nécessaires pour chaque volet. Notre équipe a tenu des réunions sprint régulières pour confirmer que notre travail correspondait aux attentes du client. Toutes les fonctionnalités ont été mises en œuvre et soumises à des tests rigoureux de performance et de précision, avec un retour d'information continu de la part du client.

Do skutecznej komunikacji i śledzenia projektów wykorzystaliśmy narzędzia Microsoft i Monday.com, zapewniając przejrzysty proces i aktualizacje w czasie rzeczywistym.

Zespół

1

Kierownik projektu

3

Programiści React

3

Programiści Java

1

ML/Python Développeur

2

Inżynierowie danych

Wyniki

50% szybszy proces adnotacji, 60% redukcja ręcznej obsługi danych i 3-krotny wzrost szybkości wyszukiwania danych dla naukowców.

Dans le cadre de notre collaboration avec le client, qui porte sur trois domaines clés, nous avons réalisé des progrès considérables dans l'amélioration de ses capacités de recherche scientifique. Voici un aperçu des résultats obtenus :

  • Usprawnione operacje wyszukiwania: Les efforts de notre équipe pour affiner le système de recherche ont permis de doubler la vitesse de recherche, ce qui a profité aux chercheurs dans leur quête d'un accès rapide aux données scientifiques.
  • Precyzja w adnotacjach: Wprowadzenie zautomatyzowanego systemu adnotacji zaowocowało zwiększoną dokładnością adnotacji, co jest czynnikiem krytycznym dla dogłębnych badań naukowych.
  • Zwiększona wydajność obsługi danych: En automatisant les processus de visualisation des données, nous avons effectivement réduit de moitié le temps que les chercheurs consacraient à la manipulation manuelle des données, ce qui leur a permis de consacrer plus de temps à leurs activités de recherche principales.
  • Zwiększona prędkość przetwarzania danych: Szybkość przetwarzania i wizualizacji danych została zwiększona trzykrotnie, co oznacza skok w obsłudze złożonych zestawów danych.
  • Zoptymalizowane doświadczenie użytkownika: Zmodernizowany interfejs użytkownika naszych systemów doprowadził do znacznego wzrostu zadowolenia użytkowników, sprzyjając lepszemu zaangażowaniu w społeczność naukową.
  • Wyzwolony czas na badania: L'automatisation des tâches de routine a permis de réduire de 60% le traitement manuel des données, libérant ainsi le temps des chercheurs, auparavant accaparé par le travail manuel.
Actuellement, notre équipe spécialisée continue à travailler avec diligence sur le système, en se concentrant sur le développement de LLM afin d'affiner et d'améliorer le système du client. 
Projet d'amélioration de la qualité de l'eau
  • Lipiec 2022 r. - w trakcie realizacji

60%

redukcja ręcznej obsługi danych

3x

wzrost prędkości wyszukiwania danych

50%

szybszy proces adnotacji

Ayez l'esprit tranquille !

Zadzwoń lub wypełnij poniższy formularz, a my skontaktujemy się z Tobą po przetworzeniu Twojego zgłoszenia.

    Il s'agit d'un projet, d'une entreprise, d'une technologie, d'un spécialiste des technologies de l'information et de toute autre information utile.
    Nagraj wiadomość głosową na temat projekt, który pomoże nam lepiej go zrozumieć
    W razie potrzeby dołącz dodatkowe dokumenty
    Le projet Prześlij plik

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Ważne pliki : pdf, jpg, jpeg, png

    Informujemy, że po kliknięciu przycisku Wyślij Innowise będzie przetwarzać Twoje dane osobowe zgodnie z naszą Polityką prywatności w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej ?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Pour l'analyse des données, l'analyse et l'élaboration de programmes, les projets doivent être réalisés dans les délais impartis. projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.

    Vous voulez en savoir plus ?

    Спасибо !

    Cобщение отправлено.
    обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję !

    Wiadomość została wysłana.
    Nous traiterons votre demande et vous recontacterons dès que possible.

    Dziękuję !

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    flèche