Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Politykę Prywatności. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Thank you!

The form has been successfully submitted.
Please find further information in your mailbox.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

Oprogramowanie do badań medycznych: redukcja ręcznej obsługi danych o 60%

Firma Innowise przeprowadziła wieloaspektową oprogramowanie do badań medycznych upgrade for an ontology provider, incorporating AI-driven search, custom data dashboards, and ontology integration into a chemical research company’s infrastructure.

Klient

Branża
Opieka zdrowotna
Region
UE
Klient od
2022

Nasz klient, wiodący podmiot w dziedzinie ontologii, działa w Niemczech. Firma specjalizuje się w opracowywaniu technologii, które wyodrębniają informacje z ustrukturyzowanych i nieustrukturyzowanych danych, przekształcając je w wiedzę na potrzeby badań, odkryć i podejmowania decyzji. Jej doświadczenie obejmuje chemię, biologię i pokrewne dziedziny nauki. Firma posiada rozległy system ontologii, ustrukturyzowaną strukturę wzajemnie powiązanych terminów i pojęć naukowych.

Szczegółowe informacje o kliencie nie mogą zostać ujawnione zgodnie z warunkami umowy NDA.

Wyzwanie

Ograniczone funkcje wyszukiwania i adnotacji, złożoność tworzenia pulpitów nawigacyjnych i ręczna obsługa dokumentów w starszym systemie.

Główne wyzwania, przed którymi stanął nasz klient, koncentrowały się wokół trzech głównych obszarów: rozwój front-endu dla ich systemu wyszukiwania opartego na sztucznej inteligencji, automatyzującego wizualizacji danych within medical research software, and integrating their ontologies into an existing chemical research company’s system:

  • Developing AI-powered search system’s front-end: The client’s primary challenge was enhancing the front end of their ontology-based search system, tailored for web and mobile platforms. This system was integral for managing an extensive collection of scientific articles. The upgrade required facilitating search capabilities, viewing sources, and annotating scientific concepts and terms within various document formats. The previous system’s limitations, notably the lack of search filters and annotation functionalities, impeded the full utilization of their scientific database.
  • Automatyzacja wizualizacji danych na potrzeby badań naukowych:< Klient stanął przed wyzwaniem zautomatyzowania wizualizacji danych na potrzeby analizy danych naukowych. Wymagany system musiał wspierać naukowców zajmujących się danymi w identyfikowaniu, przygotowywaniu i walidacji danych, a także w tworzeniu informacyjnych pulpitów nawigacyjnych. Miało to kluczowe znaczenie dla klasyfikowania i łączenia jednostek medycznych, identyfikowania celów molekularnych dla nowych farmaceutyków i ułatwiania badań nad chorobami.
  • Integracja systemu ontologii w badaniach chemicznych: Integrating the client’s ontologies into a chemical research company’s existing system presented a unique challenge. The company’s legacy system heavily depended on manual processes for document handling and data entry. Our task was to modernize this system by automating document analysis and database uploads, developing a new interface, and establishing a system back-end. System ten musiał obsługiwać dwie różne role użytkowników: osoby odpowiedzialne za przesyłanie i edycję dokumentów oraz administratorów przeglądających i potwierdzających te wpisy.

Wdrożenie

System wyszukiwania oparty na sztucznej inteligencji, zautomatyzowane pulpity nawigacyjne i płynna integracja ontologii w badaniach chemicznych

Innowise’s team focused on three key aspects of the project:

Ulepszanie systemu wyszukiwania w oprogramowaniu do badań medycznych

Nasz zespół skupił się na opracowaniu i ulepszeniu wyspecjalizowanego systemu wyszukiwania opartego na sztucznej inteligencji – kluczowego podsystemu w ramach większej struktury, zaprojektowanego dla interfejsów internetowych i mobilnych. Zadanie to obejmowało wiele ulepszeń technicznych i funkcjonalnych:

  • Zaawansowane wyszukiwanie dokumentów: Umożliwiliśmy systemowi przeprowadzanie dogłębnych wyszukiwań w różnych formatach dokumentów z ogromnego repozytorium dokumentów. System umożliwił użytkownikom lokalizowanie dokumentów, przeglądanie źródeł wewnętrznych i zewnętrznych oraz identyfikowanie kluczowych pojęć naukowych i adnotacji wyróżnionych w tych dokumentach.
  • Adnotacje i kategoryzacja: Krytyczną funkcją była możliwość wybierania przez użytkowników określonych słów lub biletów w dokumentach i przypisywania ich do odpowiednich domen w celu adnotacji. Zintegrowaliśmy funkcje sztucznej inteligencji oparte na GPT, aby pomóc użytkownikom w prawidłowym dodawaniu adnotacji i kategoryzowaniu każdego terminu lub jednostki.
  • Proces zgłaszania i recenzowania: Po wprowadzeniu zmian lub dodaniu nowych informacji do dokumentu, system ułatwiał proces weryfikacji. Użytkownicy mogli przesyłać te zmiany, które następnie były wysyłane do administratora w celu przypisania statusu i zatwierdzenia nowych adnotacji, komentarzy lub kategoryzacji.
  • Funkcje zapytań i analiz: Użytkownicy mogą teraz wybierać dokumenty z dużej bazy danych i dodawać je do zbiorczego koszyka. Następnie mogą przeszukiwać te dokumenty za pomocą paska wyszukiwania w Analizatorze, zadając konkretne pytania lub żądając podsumowań i analiz na podstawie Technologia GPT.
  • Tworzenie niestandardowych filtrów: Nasz programista stworzył zaawansowane filtry do wyszukiwania dokumentów, dostosowane do różnych typów źródeł.
  • Wyzwania związane z przeglądarką dokumentów: Jednym ze złożonych zadań było opracowanie przeglądarki dokumentów zdolnej do wyświetlania zaznaczonych adnotacji na dokumentach PDF. Wymagało to skomplikowanej koordynacji back-endowej w celu poprawnego nakładania adnotacji.
  • Przegląd starszego kodu i architektury: Zajęliśmy się wyzwaniami związanymi ze starszym kodem i brakiem struktury architektonicznej, zapewniając, że system został zbudowany na solidnych, nowoczesnych fundamentach technologicznych.
  • Integracja wielu wersji GPT: Nasz zespół ulepszył system o wiele wersji GPT (3.5, 4, Davinci), umożliwiając bardziej wszechstronną analizę dokumentów.
  • Integracja LLM: Innowise skupił się na rozwoju LLM, który pozwala użytkownikom na wprowadzanie zapytań w języku naturalnym. Po przekonwertowaniu zapytań na żądania zaplecza, mogą one zostać wysłane na serwer.

Automatyzacja pulpitu nawigacyjnego w nauce o danych

Naszym programistom zespół data science focused on automating data visualization through dashboards, a crucial component for the client’s research in identifying molecular targets for new pharmaceutical treatments. The primary diseases under study included obesity and muscle diseases.

  • Tworzenie pulpitu nawigacyjnego: The team’s objective was to create dashboards for visualizing pharmaceutical data. This involved processing large datasets, which are a vast number of annotated medical articles with unique ID and metadata, to form sizable GBQ tables. 

  • Wizualizacja danych: Korzystanie z Looker StudioPrzekształciliśmy te duże tabele danych w mniejsze, łatwiejsze w zarządzaniu formaty do tworzenia pulpitów nawigacyjnych. Ten etap wizualizacji był niezbędny, aby eksperci mogli lepiej przeglądać i filtrować dane.

  • Automatyzacja pulpitu nawigacyjnego: Po zatwierdzeniu przez ekspertów medycznych zautomatyzowaliśmy tworzenie pulpitu nawigacyjnego przy użyciu technik inżynierii danych. Obejmowało to wykorzystanie repozytoriów zawierających skrypty SQL do pobierania wymaganych informacji. Skrypty te zostały zaplanowane do uruchamiania w określonych odstępach czasu, zapewniając aktualność pulpitów nawigacyjnych z najnowszymi wynikami badań.

  • Ciągłe aktualizacje i integracja: Nasze rozwiązanie pozwoliło na ciągłą integrację nowych istotnych publikacji z pulpitami nawigacyjnymi. Ten dynamiczny proces aktualizacji był ułatwiany przez Google Cloud Functions. Dzięki temu pulpity nawigacyjne były aktualizowane o najnowsze dane.

  • Zarządzanie zapytaniami: Obsługiwaliśmy zapytania poprzez duże tabele, wyciągając konkretne informacje na podstawie zapytań wyszukiwania. Następnie zespół wizualizował te statystyki na pulpitach nawigacyjnych i identyfikował wszelkie problemy w zapytaniach wyszukiwania.

Integracja ontologii w badaniach chemicznych

Our project focused on integrating our client’s ontologies into an established lab management software at a chemical research company. This task involved several key steps to modernize and automate their outdated system:

  • Analiza i badania systemowe: We began with a thorough analysis and research of the client’s legacy system. This Oprogramowanie do zarządzania laboratorium, używane głównie do przechowywania raportów i wyników badań, było oparte na starszym oprogramowaniu. Java wersje i technologie JSP.
  • Opracowanie nowego interfejsu i zaplecza: Nasze podejście obejmowało opracowanie nowego interfejsu i systemu zaplecza w celu zautomatyzowania procesu analizy dokumentów i aktualizacji bazy danych, który wcześniej był wykonywany ręcznie.
  • Typy użytkowników i funkcje: Zaprojektowaliśmy system z myślą o dwóch różnych typach użytkowników:
  • Przesyłający dokument: Naukowcy, którzy dodają dokumenty do systemu. Po dodaniu adnotacji do dokumentu pojawia się on na specjalnej stronie, na której przesyłający może przejrzeć wyniki, dokonać edycji i potwierdzić przesłanie do bazy danych.
  • Administrator: Odpowiedzialny za przeglądanie i potwierdzanie dodanych dokumentów. Rola ta obejmuje kompleksowy przegląd dokumentów, z możliwością edycji, zatwierdzania lub wprowadzania zmian przed ostatecznym wprowadzeniem do bazy danych.
  • Rozwój back-endu i przegląd starszego kodu: Nasz programista podjął się zadania przebudowy istniejącego kodu. Wiązało się to z pisaniem stron JSP zgodnie ze specyfikacją klienta i rozwijaniem funkcji zaplecza (żądania, odpowiedzi, przetwarzanie danych i wprowadzanie danych do bazy danych).
  • Rozwój interfejsu administratora: Opracowaliśmy również część administracyjną systemu, w której administrator (zazwyczaj kierownik działu badawczego) otrzymuje powiadomienie z linkiem do interfejsu wyświetlającego informacje z bazy danych.
  • Integracja interfejsu API ontologii: The core of our solution was integrating the Ontology API into the client’s lab management software. This API served as a point for sending document-related queries and receiving responses, which were then processed and displayed through the frontend before being sent to the client’s database.
  • Obsługa dokumentów i danych: In this system, documents uploaded to the ontological system were processed, and the resulting data was saved in the company’s chemical research database. This allowed for automatic analysis of documents and retrieval of important chemical compound information.
  • Rozwój w pełnym zakresie: Nasz programista pracował jako inżynier full-stack, zajmując się zarówno aspektami front-end, jak i back-end oraz zapewniając płynną integrację wszystkich komponentów systemu.

Technologie

Języki programowania

JavaScript, TypeScript, Java

Front-end

React, react-pdf, Redux, Redux-thunk, React-redux, Primereact, SASS, Lodash, Axios, FileSaver, GPT-Tokenizer

Back-end

Spring Boot, Java z bibliotekami Lucene, Stardog

Nauka o danych i analityka

Python (Pandas, Numpy, Plotly, Matplotlib), GCP (Google Big Query, Google Cloud Storage, Cloud Run), Looker, Data Studio, Apache Solr, niestandardowe narzędzia do przetwarzania i wizualizacji danych.

Proces

Nasze podejście do procesu rozwoju było metodyczne i zgodne z zasadami Agile, co zapewniło elastyczność i ciągłe doskonalenie.

At the beginning, we conducted thorough research to understand the client’s needs and existing systems to deliver a detailed ‘Vision and Scope’ document. Based on the initial findings, we proceeded to design and develop the necessary features for each stream. Our team held regular sprint meetings to confirm that our work aligned with client expectations. All features were implemented and subjected to rigorous testing for performance and accuracy, with the client providing continuous feedback.

Do skutecznej komunikacji i śledzenia projektów wykorzystaliśmy narzędzia Microsoft i Monday.com, zapewniając przejrzysty proces i aktualizacje w czasie rzeczywistym.

Zespół

1

Kierownik projektu

3

Programiści React

3

Programiści Java

1

ML/Python Developer

2

Inżynierowie danych

Wyniki

50% szybszy proces adnotacji, 60% redukcja ręcznej obsługi danych i 3-krotny wzrost szybkości wyszukiwania danych dla naukowców.

In our collaborative effort with the client, spanning three key streams, we’ve made significant strides in advancing their scientific research capabilities. Here’s a snapshot of the actual results:

  • Usprawnione operacje wyszukiwania: Our team’s efforts in refining the search system led to a doubling of search speed, benefiting researchers in their quest for swift access to scientific data.
  • Precyzja w adnotacjach: Wprowadzenie zautomatyzowanego systemu adnotacji zaowocowało zwiększoną dokładnością adnotacji, co jest czynnikiem krytycznym dla dogłębnych badań naukowych.
  • Zwiększona wydajność obsługi danych: By automating data visualization processes, we’ve effectively halved the time researchers spent on manual data handling, translating to more time for core research activities.
  • Zwiększona prędkość przetwarzania danych: Szybkość przetwarzania i wizualizacji danych została zwiększona trzykrotnie, co oznacza skok w obsłudze złożonych zestawów danych.
  • Zoptymalizowane doświadczenie użytkownika: Zmodernizowany interfejs użytkownika naszych systemów doprowadził do znacznego wzrostu zadowolenia użytkowników, sprzyjając lepszemu zaangażowaniu w społeczność naukową.
  • Wyzwolony czas na badania: Automating routine tasks has led to a 60% reduction in manual data handling, liberating the researchers’ time, previously consumed by manual work.
Currently, our dedicated team continues to work diligently on the system, focusing on the development of LLMs to further refine and enhance the client’s system. 
Czas trwania projektu
  • Lipiec 2022 r. - w trakcie realizacji

60%

redukcja ręcznej obsługi danych

3x

wzrost prędkości wyszukiwania danych

50%

szybszy proces adnotacji

Skontaktuj się z nami!

Zadzwoń lub wypełnij poniższy formularz, a my skontaktujemy się z Tobą po przetworzeniu Twojego zgłoszenia.

    Prosimy o podanie szczegółów projektu, czasu trwania, stosu technologicznego, potrzebnych specjalistów IT i innych istotnych informacji.
    Nagraj wiadomość głosową na temat projekt, który pomoże nam lepiej go zrozumieć
    W razie potrzeby dołącz dodatkowe dokumenty
    Prześlij plik

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Ważne pliki: pdf, jpg, jpeg, png

    Informujemy, że po kliknięciu przycisku Wyślij Innowise będzie przetwarzać Twoje dane osobowe zgodnie z naszą Polityką prywatności w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.

    Спасибо!

    Cобщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję!

    Wiadomość została wysłana.
    We’ll process your request and contact you back as soon as possible.

    Dziękuję!

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    arrow