Das Formular wurde erfolgreich abgeschickt.
Weitere Informationen finden Sie in Ihrem Briefkasten.
Sprache auswählen
Im Jahr 2009 gab es eine Folge von "The Office", die ein interessantes Thema aufgriff. Nach der Hochzeit von Jim und Pam machte sich das Duo auf den Weg in die langersehnten Flitterwochen. Währenddessen besetzte Kevin Jims Schreibtisch im Büro und fing einen Anruf der Kreditkartenfirma ab. Sie überprüften Transaktionen, die in Puerto Rico getätigt wurden, und glaubten, Jim sei am Apparat. In einem Versuch, Jim zu decken, bestätigte Kevin die Aktivitäten, aber das Missverständnis führte dazu, dass die Kreditkartenfirma Jims Karte deaktivierte. Obwohl dieses Szenario in einer Sitcom zum Lachen ist, spiegelt es auf subtile Weise die realen Herausforderungen wider, mit denen Privatpersonen und Unternehmen konfrontiert sind, wenn es darum geht, ihr Geld zu schützen und Betrug zu bekämpfen.
Od tego czasu wiele się zmieniło, ale fundamentalny trend pozostał niezmieniony. W miarę jak systemy antyfraudowe stają się coraz bardziej zaawansowane i odporne na przyszłe zagrożenia, taktyki intruzów, mające na celu naruszanie środowisk bankowych i pozyskiwanie cennych danych, stają się coraz trudniejsze do zrozumienia.
Auf den ersten Blick mag es so aussehen, als ob die einzige Möglichkeit, digitale Werte vor Hackern zu schützen, darin besteht, in maßgeschneiderte, millionenschwere digitale Lösungen zu investieren, die ein eigenes Projektteam und ein solides Budget erfordern. Glücklicherweise kann die Open-Source-Natur den Banken drastische Einsparungen ermöglichen, da sie kosteneffiziente, widerstandsfähige und skalierbare Verteidigungsmechanismen ermöglicht, die sich proaktiv und in Echtzeit an die ausgeklügelten Strategien der Betrüger anpassen.
Szacuje się, że oszustwa płatnicze będą nadal rosły, osiągając prognozowany koszt 40,62 miliarda dolarów do 2027 roku.
Zazwyczaj open-source oprogramowania open-source do wykrywania oszustw finansowych wykorzystuje silniki oparte na regułach i uczeniu maszynowym (ML) do identyfikowania i ograniczania nieuczciwych działań. Oba mają wyraźne zalety, odpowiednie dla różnych firm FinTech w zależności od ich specyficznych wymagań i charakteru danych.
Silnik oparty na regułach działa w oparciu o zestaw predefiniowanych kryteriów lub reguł ustanowionych poprzez analizę typowych wzorców i taktyk stosowanych w nieuczciwych działaniach. Metodycznie analizuje transakcje i działania, wyszukując wszelkie przypadki, które są zgodne z ustalonym zestawem reguł. Po zidentyfikowaniu transakcji, która spełnia te kryteria, system oznacza ją do dodatkowej analizy lub automatycznie blokuje. To podejście do wykrywania oszustw może być szybko wdrożone, ponieważ opiera się na predefiniowanych regułach, a nie wymaga obszernych danych szkoleniowych, co ma szczególne zastosowanie w silnikach ML. Algorytmy oparte na regułach są szczególnie skuteczne dla firm FinTech z dobrze zdefiniowanymi, spójnymi wzorcami transakcji i jasnym zrozumieniem typów oszustw, na które są najbardziej podatne.
Silniki uczenia maszynowego wykorzystują zaawansowane algorytmy, które uczą się i ewoluują na podstawie danych, identyfikując potencjalne oszustwa w sposób adaptacyjny i dynamiczny. W przeciwieństwie do statycznych systemów opartych na regułach, silniki ML wyróżniają się zdolnością do odkrywania i dostosowywania się do nowych, wyrafinowanych wzorców oszustw poprzez ciągłą analizę transakcji w czasie rzeczywistym. Ten stały proces uczenia się pozwala na wykrywanie oszustw, które odbiegają od znanych wzorców i zapewnia, że system pozostaje skuteczny w dłuższej perspektywie. Sukces silników ML zależy jednak od dostępu do obszernych zbiorów danych, ponieważ ich zakres i głębokość bezpośrednio wpływają na dokładność i niezawodność modeli. Podejście to jest szczególnie odpowiednie dla firm FinTech z dużą ilością i różnorodnością transakcji, gdzie konwencjonalne schematy oparte na regułach mogą przeoczyć wyrafinowane oszustwa.
Silnik oparty na regułach działa w oparciu o zestaw predefiniowanych kryteriów lub reguł ustanowionych poprzez analizę typowych wzorców i taktyk stosowanych w nieuczciwych działaniach. Metodycznie analizuje transakcje i działania, wyszukując wszelkie przypadki, które są zgodne z ustalonym zestawem reguł. Po zidentyfikowaniu transakcji, która spełnia te kryteria, system oznacza ją do dodatkowej analizy lub automatycznie blokuje. To podejście do wykrywania oszustw może być szybko wdrożone, ponieważ opiera się na predefiniowanych regułach, a nie wymaga obszernych danych szkoleniowych, co ma szczególne zastosowanie w silnikach ML. Algorytmy oparte na regułach są szczególnie skuteczne dla firm FinTech z dobrze zdefiniowanymi, spójnymi wzorcami transakcji i jasnym zrozumieniem typów oszustw, na które są najbardziej podatne.
Silniki uczenia maszynowego wykorzystują zaawansowane algorytmy, które uczą się i ewoluują na podstawie danych, identyfikując potencjalne oszustwa w sposób adaptacyjny i dynamiczny. W przeciwieństwie do statycznych systemów opartych na regułach, silniki ML wyróżniają się zdolnością do odkrywania i dostosowywania się do nowych, wyrafinowanych wzorców oszustw poprzez ciągłą analizę transakcji w czasie rzeczywistym. Ten stały proces uczenia się pozwala na wykrywanie oszustw, które odbiegają od znanych wzorców i zapewnia, że system pozostaje skuteczny w dłuższej perspektywie. Sukces silników ML zależy jednak od dostępu do obszernych zbiorów danych, ponieważ ich zakres i głębokość bezpośrednio wpływają na dokładność i niezawodność modeli. Podejście to jest szczególnie odpowiednie dla firm FinTech z dużą ilością i różnorodnością transakcji, gdzie konwencjonalne schematy oparte na regułach mogą przeoczyć wyrafinowane oszustwa.
Innowise ist innovativ, fachkundig und seriös und hat Unternehmen mit Dutzenden von digitalen Bank- und FinTech-Lösungen ausgestattet. Wir haben ein umfangreiches Fachwissen angesammelt, das uns zu einem führenden Unternehmen macht, wenn es darum geht, die spezifischen Herausforderungen von FinTech-Unternehmen zu verstehen und zu bewältigen. Unser Engagement, immer an der Spitze der operativen Exzellenz zu bleiben, hat uns dazu gebracht, InnoFort zu entwickeln. Diese budgetfreundliche oprogramowanie do wykrywania oszustw bankowych łączy precyzję silników opartych na regułach z adaptacyjną inteligencją ML, od gromadzenia danych transakcyjnych po uruchamianie działań prewencyjnych.
Nasz zespół projektowy wykorzystał zaawansowane możliwości integracji, aby płynnie gromadzić dane z wielu źródeł, w tym platform transakcji online, systemów bankowych, punktów interakcji z klientami i bramek płatniczych. Skrupulatnie rejestrowaliśmy każdy szczegół, od kwot, dat i godzin transakcji po bardziej szczegółowe dane, takie jak metody płatności, lokalizacje geograficzne, adresy IP i identyfikatory urządzeń. Nasi programiści dodatkowo wzbogacili InnoFort o zaawansowane techniki, takie jak analiza behawioralna, która monitorowała wzorce interakcji użytkowników. Ponadto dodaliśmy funkcję śledzenia geolokalizacji, która zapewniała kontekst fizycznej lokalizacji transakcji, umożliwiając InnoFort oznaczanie działań w nietypowych lub obarczonych wysokim ryzykiem obszarach.
Nach der Datenerfassung wurden diese Daten im nächsten Schritt anhand einer Reihe vordefinierter Regeln analysiert. Diese Regeln wurden mit einer domänenspezifischen Sprache (DSL) erstellt, die komplexe Betrugserkennungslogik auf eine Art und Weise ausdrückt, die sowohl leistungsstark als auch für Nicht-Programmierer, wie z. B. Betrugsanalysten, verständlich ist. Mithilfe der DSL konnten sie komplizierte Verhaltensmuster und Transaktionsanomalien erstellen, die auf potenziellen Betrug hinwiesen, z. B. Transaktionshäufigkeit, unregelmäßige Beträge und plötzliche Verhaltensänderungen. Wenn neue Betrugstrends auftauchten, aktualisierten und implementierten unsere Spezialisten sofort neue Betrugsbekämpfungsregeln, um sicherzustellen, dass InnoFort in Echtzeit mit der sich verändernden Landschaft der Cyber-Bedrohungen Schritt halten konnte. Dadurch wurde die Widerstandsfähigkeit des Systems gegenüber neuen Betrugstaktiken erhöht und die Latenzzeit zwischen der Identifizierung der Bedrohung und der Reaktion darauf erheblich verkürzt.
Sobald eine Transaktion anhand des Regelsatzes analysiert wurde, wird ein Betrugsscore zugewiesen, um sie von regulären Bankgeschäften zu unterscheiden und geeignete Maßnahmen auszulösen, wenn ein riskantes Muster auftaucht. Diese Punktzahl quantifiziert die Wahrscheinlichkeit, dass es sich um eine betrügerische Transaktion handelt, basierend auf den in den DSL-Regeln festgelegten Parametern. Transaktionen, die über einem vordefinierten Schwellenwert liegen, werden als hochriskant eingestuft und automatisch abgelehnt oder zur manuellen Überprüfung in eine Warteschlange gestellt. Unser Projektteam stellte sicher, dass dieser Schwellenwert nicht statisch ist, sondern angepasst werden kann, um die sich entwickelnde Risikobereitschaft und Betrugslandschaft des Finanzinstituts zu berücksichtigen. Durch den Einsatz von Algorithmen des maschinellen Lernens verfeinerte InnoFort kontinuierlich seine Bewertungskriterien auf der Grundlage neuer Daten, Betrugstrends und Rückmeldungen aus dem Überprüfungsprozess. Auf diese Weise wurde sichergestellt, dass der Erkennungsmechanismus im Laufe der Zeit immer präziser wurde, wodurch die Zahl der Fehlalarme reduziert und gleichzeitig die Fähigkeit verbessert wurde, betrügerische Transaktionen präventiv zu erkennen und zu entschärfen.
Lassen Sie nicht zu, dass Betrüger Ihr Unternehmen überlisten - steigen Sie noch heute auf Open-Source-Intelligence um
Innowise zaprojektowało oprogramowanie open-source oprogramowania open-source do wykrywania oszustw finansowych InnoFort z myślą o elastyczności. Wykorzystaliśmy moc silników opartych na regułach i uczenia maszynowego, aby zabezpieczyć transakcje cyfrowe i interakcje w różnych sektorach. Oprócz ochrony środków przed hakowaniem i zapewnienia zgodności z regulacjami, InnoFort może być również wykorzystywany w innych działaniach wymagających identyfikacji naruszeń.
Jako oprogramowanie do wykrywania oszustw płatniczych, InnoFort identyfikuje nietypowe wzorce transakcji, oznacza podejrzane działania na koncie i weryfikuje tożsamość użytkowników, chroniąc zarówno podmioty finansowe, jak i ich klientów przed oszustwami cyfrowymi. Ponadto pomaga w zapewnieniu zgodności z przepisami, monitorując transakcje pod kątem działań, które mogą naruszać przepisy dotyczące przeciwdziałania praniu pieniędzy (AML) i znajomości klienta (KYC).
InnoFort może również chronić firmy przed spamem, blokując niechciane, często nieistotne lub nieodpowiednie treści, w tym wiadomości tekstowe, posty w mediach społecznościowych i komentarze na stronach internetowych. Jednocześnie zwalcza fałszywe wiadomości, które wydają się pochodzić z renomowanego źródła, często naśladując wygląd i sposób działania wiadomości e-mail od znanych organizacji, banków lub usług.
Zaawansowana technologia filtrowania treści InnoFort wykracza poza samą identyfikację i blokowanie obraźliwego języka w czatach i komentarzach. Automatycznie wykrywając i filtrując wulgaryzmy, wspiera bezpieczniejsze i bardziej integracyjne środowisko online, w którym uczestnicy mogą angażować się w przyjazny sposób. To proaktywne podejście zwiększa komfort użytkowania i utrzymuje standardy społeczności.
“Open-Source-Software zur Erkennung von Finanzbetrug ist eine perfekte Option für Unternehmen, die nicht über große finanzielle Mittel verfügen, aber dennoch mit der großen Herausforderung konfrontiert sind, Betrügereien zu bekämpfen. Open-Source-Lösungen bieten das Beste aus beiden Welten: Sie sind erschwinglich für diejenigen, die mit ihren Ausgaben vorsichtig umgehen, und dennoch leistungsfähig genug, um Betrüger abzuschrecken. Sie zeichnen sich durch die Gemeinschaft aus, die hinter ihnen steht und die Software ständig verbessert und aktualisiert. Das bedeutet, dass auch kleine Unternehmen sich gegen Betrug wehren können, ohne die Bank zu sprengen.“
Aleksander Niemcow
Kierownik ds. dostaw i ekspert FinTech w Innowise
Tworzenie oprogramowania open-source do wykrywania oszustw finansowych przyniosło wyjątkowe wyzwania, zwłaszcza w kontekście równoważenia współpracy w projektach open-source z wymaganiami dotyczącymi wykrywania oszustw.
Eine der grundlegenden Herausforderungen, auf die unsere Spezialisten beim Einsatz von ML-gesteuerten Engines für die Betrugserkennung stießen, war die Notwendigkeit von genau etikettierten Daten. Bei der Kennzeichnung geht es um die Identifizierung und Markierung von Datenpunkten als "gut" (legitim) oder "schlecht" (betrügerisch), was für das Training von ML-Modellen zur Erkennung ähnlicher Muster in zukünftigen Transaktionen entscheidend ist. Aufgrund der Komplexität der Daten und der Vielschichtigkeit des Betrugs ist eine Massenkennzeichnung in moderner Betrugserkennungssoftware jedoch nicht möglich. Die Anzahl der böswilligen Transaktionen ist in der Regel ein sehr kleiner Anteil aller Finanztransaktionen, und ihre Merkmale variieren stark, was eine genaue Kennzeichnung großer Datensätze erschwert.
Mit der Weiterentwicklung der Technologie ändern sich auch die Methoden der Betrüger. Neue Werkzeuge und Techniken ermöglichen es den Kriminellen, schwer zu entdeckende Betrugsangriffe zu starten, die die Sicherheit digitaler Gelder gefährden. Diese ständige Weiterentwicklung stellt ein bewegliches Ziel für Betrugserkennungssysteme dar und erfordert eine ständige Anpassung und Verbesserung der Algorithmen. Open-Source-Software erhöht die Komplexität zusätzlich, da Aktualisierungen und Verbesserungen so verwaltet werden müssen, dass die Beiträge der Community genutzt werden und gleichzeitig die Integrität und Effektivität des Systems gewährleistet ist. Um mit diesen Fortschritten Schritt zu halten, ist ein proaktiver Ansatz erforderlich, um neue Erkennungsmethoden zu integrieren, aufkommende Betrugstrends zu überwachen und Spitzentechnologien zu integrieren.
Viele Kunden, insbesondere im Finanzsektor, ziehen es vor, ihre Algorithmen zur Betrugserkennung vertraulich zu behandeln. Diese Vorliebe stellt eine Herausforderung für Open-Source-Projekte dar, die von Transparenz und gemeinschaftlichem Informationsaustausch leben. Das Dilemma besteht darin, dass ein Gleichgewicht zwischen dem Open-Source-Ethos und dem Wunsch der Kunden nach Privatsphäre und Sicherheit gefunden werden muss. Die Kunden befürchten, dass die Offenlegung ihrer Betrugserkennungsstrategien Betrügern Aufschluss darüber geben könnte, wie diese Maßnahmen umgangen werden können. Um diese Bedenken auszuräumen, muss ein Rahmen entwickelt werden, der es den Kunden ermöglicht, von den kollektiven Fortschritten der Open-Source-Lösungen zu profitieren und gleichzeitig die Vertraulichkeit ihrer spezifischen Implementierungen zu wahren.
Wybierz InnoFort, aby uzyskać niedrogie rozwiązanie white-label z przełomową funkcjonalnością.
Innowise stworzyło oprogramowanie do wykrywania oszustw typu white-label open-source, które łączy solidne, dynamiczne możliwości silników opartych na regułach i uczeniu maszynowym, oferując niezrównany mechanizm obrony przed oszustwami. Nasi inżynierowie opracowali InnoFort nie tylko po to, aby nadążyć, ale aby wyprzedzać intruzów o kilka kroków, zapewniając, że operacje finansowe są chronione przed nawet najbardziej zaawansowanymi zagrożeniami, bez kompromisów w zakresie jakości i możliwości. Dzięki temu dostęp do najnowocześniejszych rozwiązań wykrywania oszustw jest teraz dostępny dla firm o różnej wielkości i budżetach.
Wybór Innowise oznacza współpracę z zespołem posiadającym dogłębną wiedzę specjalistyczną i zrozumienie z pierwszej ręki zawiłości i wyzwań w sektorze finansowym. Zapraszamy do skorzystania z naszego doświadczenia i technologii, aby wzmocnić swoje operacje i zapewnić proaktywne zapobieganie oszustwom, a nie reaktywne reagowanie na złośliwe próby. Wybierz Innowise i pozwól InnoFort stać się fortecą nie do zdobycia wokół Twoich zasobów cyfrowych.
Oprogramowanie open-source znacznie obniża koszty, eliminując drogie opłaty licencyjne związane z rozwiązaniami własnościowymi. Oferuje elastyczność w dostosowywaniu i skalowaniu oprogramowania do konkretnych potrzeb bez dodatkowych kosztów, zapewniając, że inwestujesz tylko w usługi na żądanie.
Oprogramowanie open source jest często błędnie postrzegane jako mniej bezpieczne; jednak jego przejrzystość jest w rzeczywistości mocną stroną. Otwarta widoczność kodu źródłowego pozwala na szeroko zakrojoną wzajemną weryfikację, umożliwiając identyfikację luk w zabezpieczeniach i ich szybkie usuwanie przez społeczność. Ponadto można wdrożyć niestandardowe środki bezpieczeństwa i ulepszenia, aby jeszcze bardziej wzmocnić oprogramowanie zgodnie z polityką bezpieczeństwa.
Wdrażanie i utrzymywanie oprogramowania open source może wiązać się z kosztami związanymi z hostingiem, dostosowywaniem, wsparciem i ewentualną integracją usług stron trzecich. Wydatki te są jednak zazwyczaj znacznie niższe niż całkowity koszt posiadania oprogramowania własnościowego.
Unbedingt. Sie haben die Freiheit, den Code zu ändern, um die Funktionalität, die Integrationsmöglichkeiten und die Benutzeroberfläche der Software perfekt auf die spezifischen Anforderungen und Arbeitsabläufe Ihres Unternehmens abzustimmen und schließlich die najlepsze oprogramowanie do wykrywania oszustw finansowych.
Po pierwsze, nasi konsultanci pomogą opracować plan wdrożenia i zidentyfikować wymagania techniczne i biznesowe. Następnie dedykowany zespół projektowy przystąpi do wdrożenia modułów InnoFort, konfigurując i dostosowując funkcje zgodnie z wcześniej określonymi wymaganiami.
Oceń ten artykuł:
4.8/5 (45 Meinungen)
Die wichtigsten Themen
Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.
Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.
Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.
Podpisujemy umowę i rozpoczynamy pracę nad projectm tak szybko, jak to możliwe.
Sie können sich auf den IT-Bereich und auf interessante Studiengänge konzentrieren.
© 2007-2024 Innowise. Alle Rechte vorbehalten.
Datenschutzrichtlinie. Cookies-Richtlinie.
Innowise Sp. z o.o Ul. Rondo Ignacego Daszyńskiego, 2B-22P, 00-843 Warschau, Polen
Rejestrując się, wyrażasz zgodę na naszą Politykę Prywatności, w tym korzystanie z plików cookie i przekazywanie Twoich danych osobowych.
Dziękuję!
Wiadomość została wysłana.
Wir werden Ihre Anfrage bearbeiten und Sie so schnell wie möglich kontaktieren.
Dziękuję!
Wiadomość została wysłana.
Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.