





Formuläret har skickats in framgångsrikt.
Ytterligare information finns i din brevlåda.
År 2009 släppte "The Office" ett avsnitt som belyste en intressant fråga. Efter Jims och Pams bröllop gav sig duon ut på sin efterlängtade smekmånad. Under tiden, tillbaka på kontoret, ockuperade Kevin Jims skrivbord och fångade upp ett samtal från kreditkortsföretaget. De verifierade transaktioner som gjorts i Puerto Rico och trodde att det var Jim som ringde. I ett försök att täcka upp för Jim bekräftade Kevin aktiviteten, men missförståndet ledde till att kreditkortsföretaget avaktiverade Jims kort. Detta scenario, som visserligen var ett skämt i en sitcom, återspeglade på ett subtilt sätt de verkliga utmaningar som privatpersoner och företag ställs inför när de ska skydda sina medel och bekämpa bedrägerier.
Od tego czasu wiele się zmieniło, ale fundamentalny trend pozostał niezmieniony. W miarę jak systemy antyfraudowe stają się coraz bardziej zaawansowane i odporne na przyszłe zagrożenia, taktyki intruzów, mające na celu naruszanie środowisk bankowych i pozyskiwanie cennych danych, stają się coraz trudniejsze do zrozumienia.
Vid första anblicken kan det verka som att det enda sättet att skydda digitala tillgångar från hackning är att investera i anpassade digitala lösningar för flera miljoner dollar som kräver ett dedikerat projektteam och en solid budget. Lyckligtvis kan öppen källkod drastiskt spara pengar åt bankerna genom att möjliggöra kostnadseffektiva, motståndskraftiga och skalbara försvarsmekanismer som proaktivt anpassas i realtid för att motverka bedragarnas sofistikerade strategier.
Szacuje się, że oszustwa płatnicze będą nadal rosły, osiągając prognozowany koszt 40,62 miliarda dolarów do 2027 roku.
Zazwyczaj open-source oprogramowania open-source do wykrywania oszustw finansowych wykorzystuje silniki oparte na regułach i uczeniu maszynowym (ML) do identyfikowania i ograniczania nieuczciwych działań. Oba mają wyraźne zalety, odpowiednie dla różnych firm FinTech w zależności od ich specyficznych wymagań i charakteru danych.
Silnik oparty na regułach działa w oparciu o zestaw predefiniowanych kryteriów lub reguł ustanowionych poprzez analizę typowych wzorców i taktyk stosowanych w nieuczciwych działaniach. Metodycznie analizuje transakcje i działania, wyszukując wszelkie przypadki, które są zgodne z ustalonym zestawem reguł. Po zidentyfikowaniu transakcji, która spełnia te kryteria, system oznacza ją do dodatkowej analizy lub automatycznie blokuje. To podejście do wykrywania oszustw może być szybko wdrożone, ponieważ opiera się na predefiniowanych regułach, a nie wymaga obszernych danych szkoleniowych, co ma szczególne zastosowanie w silnikach ML. Algorytmy oparte na regułach są szczególnie skuteczne dla firm FinTech z dobrze zdefiniowanymi, spójnymi wzorcami transakcji i jasnym zrozumieniem typów oszustw, na które są najbardziej podatne.
Silniki uczenia maszynowego wykorzystują zaawansowane algorytmy, które uczą się i ewoluują na podstawie danych, identyfikując potencjalne oszustwa w sposób adaptacyjny i dynamiczny. W przeciwieństwie do statycznych systemów opartych na regułach, silniki ML wyróżniają się zdolnością do odkrywania i dostosowywania się do nowych, wyrafinowanych wzorców oszustw poprzez ciągłą analizę transakcji w czasie rzeczywistym. Ten stały proces uczenia się pozwala na wykrywanie oszustw, które odbiegają od znanych wzorców i zapewnia, że system pozostaje skuteczny w dłuższej perspektywie. Sukces silników ML zależy jednak od dostępu do obszernych zbiorów danych, ponieważ ich zakres i głębokość bezpośrednio wpływają na dokładność i niezawodność modeli. Podejście to jest szczególnie odpowiednie dla firm FinTech z dużą ilością i różnorodnością transakcji, gdzie konwencjonalne schematy oparte na regułach mogą przeoczyć wyrafinowane oszustwa.
Silnik oparty na regułach działa w oparciu o zestaw predefiniowanych kryteriów lub reguł ustanowionych poprzez analizę typowych wzorców i taktyk stosowanych w nieuczciwych działaniach. Metodycznie analizuje transakcje i działania, wyszukując wszelkie przypadki, które są zgodne z ustalonym zestawem reguł. Po zidentyfikowaniu transakcji, która spełnia te kryteria, system oznacza ją do dodatkowej analizy lub automatycznie blokuje. To podejście do wykrywania oszustw może być szybko wdrożone, ponieważ opiera się na predefiniowanych regułach, a nie wymaga obszernych danych szkoleniowych, co ma szczególne zastosowanie w silnikach ML. Algorytmy oparte na regułach są szczególnie skuteczne dla firm FinTech z dobrze zdefiniowanymi, spójnymi wzorcami transakcji i jasnym zrozumieniem typów oszustw, na które są najbardziej podatne.
Silniki uczenia maszynowego wykorzystują zaawansowane algorytmy, które uczą się i ewoluują na podstawie danych, identyfikując potencjalne oszustwa w sposób adaptacyjny i dynamiczny. W przeciwieństwie do statycznych systemów opartych na regułach, silniki ML wyróżniają się zdolnością do odkrywania i dostosowywania się do nowych, wyrafinowanych wzorców oszustw poprzez ciągłą analizę transakcji w czasie rzeczywistym. Ten stały proces uczenia się pozwala na wykrywanie oszustw, które odbiegają od znanych wzorców i zapewnia, że system pozostaje skuteczny w dłuższej perspektywie. Sukces silników ML zależy jednak od dostępu do obszernych zbiorów danych, ponieważ ich zakres i głębokość bezpośrednio wpływają na dokładność i niezawodność modeli. Podejście to jest szczególnie odpowiednie dla firm FinTech z dużą ilością i różnorodnością transakcji, gdzie konwencjonalne schematy oparte na regułach mogą przeoczyć wyrafinowane oszustwa.
Innowise är innovativa, kunniga och välrenommerade och har utrustat företag med dussintals digitala bank- och FinTech-lösningar. Vi har samlat på oss omfattande sakkunskap, vilket positionerar oss som ledare när det gäller att förstå och ta itu med FinTech-företagens specifika utmaningar. Vårt engagemang för att hålla oss på toppen av operativ excellens har lett oss till att utveckla InnoFort. Denna budgetvänliga oprogramowanie do wykrywania oszustw bankowych łączy precyzję silników opartych na regułach z adaptacyjną inteligencją ML, od gromadzenia danych transakcyjnych po uruchamianie działań prewencyjnych.
Nasz zespół projektowy wykorzystał zaawansowane możliwości integracji, aby płynnie gromadzić dane z wielu źródeł, w tym platform transakcji online, systemów bankowych, punktów interakcji z klientami i bramek płatniczych. Skrupulatnie rejestrowaliśmy każdy szczegół, od kwot, dat i godzin transakcji po bardziej szczegółowe dane, takie jak metody płatności, lokalizacje geograficzne, adresy IP i identyfikatory urządzeń. Nasi programiści dodatkowo wzbogacili InnoFort o zaawansowane techniki, takie jak analiza behawioralna, która monitorowała wzorce interakcji użytkowników. Ponadto dodaliśmy funkcję śledzenia geolokalizacji, która zapewniała kontekst fizycznej lokalizacji transakcji, umożliwiając InnoFort oznaczanie działań w nietypowych lub obarczonych wysokim ryzykiem obszarach.
Efter datainsamlingen var nästa steg att analysera dessa data mot en uppsättning fördefinierade regler. Dessa regler skapades med hjälp av ett domänspecifikt språk (DSL) som var utformat för att uttrycka komplex logik för bedrägeridetektering på ett sätt som var både kraftfullt och begripligt för icke-programmerare, t.ex. bedrägerianalytiker. Med DSL kunde de skapa invecklade beteendemönster och avvikande transaktioner som indikerade potentiellt bedrägeri, inklusive transaktionsfrekvens, oregelbundna belopp och plötsliga förändringar i beteendet. När nya bedrägeritrender uppstod uppdaterade och implementerade våra specialister dessutom omedelbart nya regler för bedrägeribekämpning, vilket säkerställde att InnoFort utvecklades i realtid med den skiftande bilden av cyberhot. Detta förbättrade systemets motståndskraft mot nya bedrägeritaktiker och minskade avsevärt latensen mellan hotidentifiering och svar.
När en transaktion har analyserats mot regeluppsättningen tilldelas en bedrägeripoäng för att skilja den från vanliga banktransaktioner och utlösa lämpliga åtgärder när ett riskabelt mönster framträder. Denna poäng kvantifierar sannolikheten för att transaktionen är bedräglig baserat på de parametrar som anges i DSL-reglerna. Transaktioner som ligger över ett fördefinierat tröskelvärde flaggas som högrisk och avvisas automatiskt eller läggs i kö för manuell granskning. Det var viktigt att vårt projektteam såg till att detta tröskelvärde inte var statiskt, utan kunde justeras för att återspegla finansinstitutets föränderliga riskaptit och bedrägerilandskap. Med hjälp av maskininlärningsalgoritmer förfinade InnoFort kontinuerligt sina poängkriterier baserat på nya data, bedrägeritrender och feedback från granskningsprocessen. Detta säkerställde att detekteringsmekanismen blev alltmer exakt över tid, vilket minskade falska positiva resultat samtidigt som dess förmåga att i förebyggande syfte identifiera och mildra bedrägliga transaktioner förbättrades.
Låt inte bedragarna överlista ditt företag - uppgradera till öppen källinformation idag
Innowise zaprojektowało oprogramowanie open-source oprogramowania open-source do wykrywania oszustw finansowych InnoFort z myślą o elastyczności. Wykorzystaliśmy moc silników opartych na regułach i uczenia maszynowego, aby zabezpieczyć transakcje cyfrowe i interakcje w różnych sektorach. Oprócz ochrony środków przed hakowaniem i zapewnienia zgodności z regulacjami, InnoFort może być również wykorzystywany w innych działaniach wymagających identyfikacji naruszeń.
Jako oprogramowanie do wykrywania oszustw płatniczych, InnoFort identyfikuje nietypowe wzorce transakcji, oznacza podejrzane działania na koncie i weryfikuje tożsamość użytkowników, chroniąc zarówno podmioty finansowe, jak i ich klientów przed oszustwami cyfrowymi. Ponadto pomaga w zapewnieniu zgodności z przepisami, monitorując transakcje pod kątem działań, które mogą naruszać przepisy dotyczące przeciwdziałania praniu pieniędzy (AML) i znajomości klienta (KYC).
InnoFort może również chronić firmy przed spamem, blokując niechciane, często nieistotne lub nieodpowiednie treści, w tym wiadomości tekstowe, posty w mediach społecznościowych i komentarze na stronach internetowych. Jednocześnie zwalcza fałszywe wiadomości, które wydają się pochodzić z renomowanego źródła, często naśladując wygląd i sposób działania wiadomości e-mail od znanych organizacji, banków lub usług.
Zaawansowana technologia filtrowania treści InnoFort wykracza poza samą identyfikację i blokowanie obraźliwego języka w czatach i komentarzach. Automatycznie wykrywając i filtrując wulgaryzmy, wspiera bezpieczniejsze i bardziej integracyjne środowisko online, w którym uczestnicy mogą angażować się w przyjazny sposób. To proaktywne podejście zwiększa komfort użytkowania i utrzymuje standardy społeczności.
“Programvara med öppen källkod för att upptäcka finansiella bedrägerier är ett perfekt alternativ för företag som inte har så djupa fickor men som ändå står inför den stora utmaningen att hantera bedrägerier. Lösningar med öppen källkod erbjuder det bästa av två världar: de är prisvärda för dem som är försiktiga med sina utgifter men ändå tillräckligt kraftfulla för att avskräcka bedragare. Gemenskapen bakom dem gör att de sticker ut och ständigt förbättrar och uppdaterar programvaran. Det innebär att även små företag nu kan stå starka mot bedrägerier, utan att det kostar skjortan.“
Aleksander Niemcow
Kierownik ds. dostaw i ekspert FinTech w Innowise
Tworzenie oprogramowania open-source do wykrywania oszustw finansowych przyniosło wyjątkowe wyzwania, zwłaszcza w kontekście równoważenia współpracy w projektach open-source z wymaganiami dotyczącymi wykrywania oszustw.
En av de grundläggande utmaningarna som våra specialister stötte på när de använde ML-drivna motorer för att upptäcka bedrägerier var behovet av korrekt märkta data. Märkning innebär att man identifierar och markerar datapunkter som antingen "bra" (legitima) eller "dåliga" (bedrägliga), vilket är avgörande för att träna ML-modeller att känna igen liknande mönster i framtida transaktioner. Massmärkning är dock inte genomförbart i dagens programvara för bedrägeridetektering på grund av datakomplexiteten och bedrägeriets nyanserade natur. Antalet skadliga transaktioner är vanligtvis en mycket liten andel av alla finansiella transaktioner, och deras egenskaper varierar kraftigt, vilket gör det svårt att märka stora datamängder på ett korrekt sätt.
I takt med att tekniken utvecklas, utvecklas också de metoder som används av bedragare. Nya verktyg och tekniker gör det möjligt för brottslingar att genomföra bedrägeriattacker som är svåra att upptäcka och som äventyrar säkerheten för digitala medel. Denna ständiga utveckling utgör ett rörligt mål för system för upptäckt av bedrägerier, vilket kräver kontinuerlig anpassning och förbättring av algoritmer. Programvara med öppen källkod lägger till ytterligare ett lager av komplexitet eftersom uppdateringar och förbättringar måste hanteras på ett sätt som utnyttjar gemenskapens bidrag samtidigt som systemets integritet och effektivitet säkerställs. För att hålla jämna steg med dessa framsteg krävs en proaktiv strategi för att införliva nya detektionsmetoder, övervaka framväxande bedrägeritrender och integrera den senaste tekniken.
Många kunder, särskilt inom finanssektorn, föredrar att hålla sina algoritmer för bedrägeridetektering konfidentiella. Denna preferens utgör en utmaning för projekt med öppen källkod, som blomstrar på öppenhet och gemensam informationsdelning. Dilemmat uppstår ur behovet av att balansera den öppna källans etos med kundernas krav på integritet och säkerhet. Kunderna oroar sig för att avslöjandet av deras strategier för att upptäcka bedrägerier kan ge bedragarna insikter om hur de kan kringgå dessa åtgärder. För att hantera denna oro krävs att man utvecklar ett ramverk som gör det möjligt för kunderna att dra nytta av de kollektiva framstegen med lösningar med öppen källkod samtidigt som sekretessen för deras specifika implementeringar upprätthålls.
Wybierz InnoFort, aby uzyskać niedrogie rozwiązanie white-label z przełomową funkcjonalnością.
Innowise stworzyło oprogramowanie do wykrywania oszustw typu white-label open-source, które łączy solidne, dynamiczne możliwości silników opartych na regułach i uczeniu maszynowym, oferując niezrównany mechanizm obrony przed oszustwami. Nasi inżynierowie opracowali InnoFort nie tylko po to, aby nadążyć, ale aby wyprzedzać intruzów o kilka kroków, zapewniając, że operacje finansowe są chronione przed nawet najbardziej zaawansowanymi zagrożeniami, bez kompromisów w zakresie jakości i możliwości. Dzięki temu dostęp do najnowocześniejszych rozwiązań wykrywania oszustw jest teraz dostępny dla firm o różnej wielkości i budżetach.
Wybór Innowise oznacza współpracę z zespołem posiadającym dogłębną wiedzę specjalistyczną i zrozumienie z pierwszej ręki zawiłości i wyzwań w sektorze finansowym. Zapraszamy do skorzystania z naszego doświadczenia i technologii, aby wzmocnić swoje operacje i zapewnić proaktywne zapobieganie oszustwom, a nie reaktywne reagowanie na złośliwe próby. Wybierz Innowise i pozwól InnoFort stać się fortecą nie do zdobycia wokół Twoich zasobów cyfrowych.
Oprogramowanie open-source znacznie obniża koszty, eliminując drogie opłaty licencyjne związane z rozwiązaniami własnościowymi. Oferuje elastyczność w dostosowywaniu i skalowaniu oprogramowania do konkretnych potrzeb bez dodatkowych kosztów, zapewniając, że inwestujesz tylko w usługi na żądanie.
Oprogramowanie open source jest często błędnie postrzegane jako mniej bezpieczne; jednak jego przejrzystość jest w rzeczywistości mocną stroną. Otwarta widoczność kodu źródłowego pozwala na szeroko zakrojoną wzajemną weryfikację, umożliwiając identyfikację luk w zabezpieczeniach i ich szybkie usuwanie przez społeczność. Ponadto można wdrożyć niestandardowe środki bezpieczeństwa i ulepszenia, aby jeszcze bardziej wzmocnić oprogramowanie zgodnie z polityką bezpieczeństwa.
Wdrażanie i utrzymywanie oprogramowania open source może wiązać się z kosztami związanymi z hostingiem, dostosowywaniem, wsparciem i ewentualną integracją usług stron trzecich. Wydatki te są jednak zazwyczaj znacznie niższe niż całkowity koszt posiadania oprogramowania własnościowego.
Absolut. Du har friheten att ändra koden för att skräddarsy programvarans funktionalitet, integrationsmöjligheter och användargränssnitt så att de passar ditt företags specifika krav och arbetsflöden perfekt och slutligen får du najlepsze oprogramowanie do wykrywania oszustw finansowych.
Po pierwsze, nasi konsultanci pomogą opracować plan wdrożenia i zidentyfikować wymagania techniczne i biznesowe. Następnie dedykowany zespół projektowy przystąpi do wdrożenia modułów InnoFort, konfigurując i dostosowując funkcje zgodnie z wcześniej określonymi wymaganiami.
Oceń ten artykuł:
4.8/5 (45 opinii)
Hur många gånger ska jag säga det?
Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.
Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.
Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.
Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.
Dowiedz się jako pierwszy o innowacjach IT i interesujących studiach przypadków.
© 2007-2024 Innowise. Wszelkie prawa zastrzeżone.
Polityka prywatności. Polityka dotycząca plików cookie.
Innowise Sp. z o.o Ul. Rondo Ignacego Daszyńskiego, 2B-22P, 00-843 Warszawa, Polska
Rejestrując się, wyrażasz zgodę na naszą Politykę Prywatności, w tym korzystanie z plików cookie i przekazywanie Twoich danych osobowych.
Dziękuję!
Wiadomość została wysłana.
Vi behandlar din begäran och kontaktar dig så snart som möjligt.
Dziękuję!
Wiadomość została wysłana.
Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.