Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Política de privacidade. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Obrigado!

O formulário foi enviado com sucesso.
Encontrará mais informações na sua caixa de correio.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

Dlaczego uczenie maszynowe jest dobre dla handlu detalicznego i e-Commerce?

Co przychodzi na myśl, gdy myślimy o uczeniu maszynowym? Może to samochód Tesli z autopilotem lub robot wyprodukowany przez Boston Dynamics? Większość powszechnie znanych rozwiązań z zakresu uczenia maszynowego (ML) to swego rodzaju fenomeny, które (przynajmniej na razie) trudno sobie wyobrazić jako użyteczne w naszym codziennym życiu.

Ale uczenie maszynowe to nie tylko takie ekskluzywne i (na razie) czasami nawet niepraktyczne produkty. W rzeczywistości prawie każda osoba na Ziemi dotyka ML niemal każdego dnia.

Mówimy o handlu detalicznym i e-Commerce. Kupujemy rzeczy każdego dnia, a większość z nich jest sprzedawana za pomocą różnych aplikacji Machine Learning.

Ale czy ML jest naprawdę pomocny i opłacalny dla takich firm? Znajdziemy odpowiedź na to pytanie (spoiler: zdecydowanie tak).

e-Commerce może czerpać wiele korzyści z rozwiązań opartych na uczeniu maszynowym.

Podnieś poziom obsługi klienta i sprzedaży dzięki inteligentniejszemu oprogramowaniu opartemu na danych.

Top 10 zastosowań ML dla biznesu w 2021 roku

Basicamente, existem duas direcções principais de trabalho para o ML no retalho e no comércio eletrónico: melhorar os processos empresariais internos ou a experiência do cliente. Mas se aprofundarmos um pouco mais o tema, veremos que o número de aplicações possíveis para a aprendizagem automática não se resume a estas duas. Então, onde é que a aprendizagem automática pode ser e é utilizada?
Controlo eficaz das existências e gestão do inventário

Zarządzanie zapasami wpływa na przepływy finansowe firmy zarówno bezpośrednio, jak i pośrednio. Przykładowo, nadmierne gromadzenie zapasów powoduje, że gromadzą się one bez żadnego celu, co może nawet prowadzić do problemu martwych zapasów. Z kolei zbyt małe zapasy mogą skutkować kosztami alternatywnymi i rozczarowaniem klientów, którzy nie mogli znaleźć potrzebnego produktu, co zrujnuje wizerunek sprzedawcy.

Uczenie maszynowe może na przykład pomóc w rozwiązaniu szerokiego zakresu problemów związanych z inwentaryzacją:

Śledzenie produktów w celu uniknięcia niedopasowań lub pomyłek, które mogą znacząco wpłynąć na doświadczenia klientów;
Wdrożenie ML może również pomóc w optymalizacji całego zarządzania zapasami, dzięki czemu dostawa towarów będzie szybsza, co zwiększy zadowolenie klientów;

Wykorzystanie uczenia maszynowego w przewidywaniu stanów magazynowych pomaga uniknąć nadmiaru i niedoboru zapasów, co poprawi wady finansowe firmy, a także wrażenia klientów

Previsão mais exacta da procura e das vendas
Este ponto é muito semelhante ao anterior. A análise de dados históricos, como as vendas durante os 3-4 anos anteriores, tendo em conta algumas variáveis laterais (como a situação económica e política) com a aprendizagem automática, permite prever a evolução das vendas no futuro, o que permite tornar os planos de produção, logística e marketing mais precisos e rentáveis. Além disso, a aprendizagem automática permite detetar novas tendências de mercado antes de todos os concorrentes se aperceberem delas, o que lhe dá a vantagem de ter tempo para implementar alterações ou lançar novos produtos e ganhar uma maior quota de mercado.
Manutenção preventiva

Kolejnym ważnym punktem dla każdej firmy jest stan sprzętu. Drobne usterki zdarzają się regularnie i to jest w porządku, nic nie jest idealne. Ale krytyczne awarie mogą mieć zbyt wysoką cenę.

Dlatego coraz więcej firm zaczyna praktykować konserwację predykcyjną. Dają one Machine Learning zestaw danych o tym, jak system działa w swojej normie, a po nauczeniu algorytm ostrzega o awariach, pozwalając firmie naprawić je, zanim będzie za późno.

Refinação dos resultados dos motores de busca e pesquisa visual

W tej dziedzinie aplikacje ML są szeroko stosowane już od dłuższego czasu. Dzięki uczeniu maszynowemu wyszukiwarka może lepiej zrozumieć, czego w szczególności szuka klient, nawet jeśli zapytanie nie jest kompletne lub dokładne.

Technologia wyszukiwania wizualnego znacznie ułatwia użytkownikom znalezienie pożądanych towarów – wystarczy przesłać obraz i wybrać spośród podobnych opcji różnych marek. Może również pomóc w wykrywaniu piractwa i podróbek, aby zapobiec ich dystrybucji i utracie zysków.

Preços dinâmicos

Kiedy ostatnio zamawiałeś Ubera? Czy cena była wyższa ze względu na wysoki popyt?

É o preço dinâmico. Com base no rácio entre condutores disponíveis e pedidos, a aplicação calcula o preço. Se houver demasiados pedidos, a Uber aumenta o preço de uma viagem, de modo a trazer mais taxistas para as estradas para que a procura seja satisfeita. É o sonho de um economista tornado realidade, não é?

Ao aplicar o ML às decisões de preços, é possível obter esse efeito, que terá um impacto positivo no fluxo financeiro de uma marca. Basicamente, depois de aprender com os dados fornecidos, o ML será capaz de calcular o preço perfeito para um determinado bem num determinado momento, o que leva a um aumento das vendas e das receitas.

Up-selling e cross-selling
Trata-se de recomendações personalizadas. Quando um cliente visita um sítio Web e coloca um artigo no carrinho (por exemplo, um smartphone), o sistema irá muito provavelmente oferecer algo relacionado e possivelmente necessário (como uma capa de proteção e um vidro). Ou, talvez, o bem escolhido tenha uma alternativa melhor (há outro smartphone em stock com melhores características). Ao permitir que a aprendizagem automática componha ofertas para artigos relacionados ou possíveis actualizações, uma empresa pode obter receitas muito maiores.
Experiência imersiva do cliente

W dzisiejszych czasach prowadzenie działalności gospodarczej to nie tylko świadczenie usług czy sprzedaż towarów. Chodzi również o to, w jaki sposób marka wchodzi w interakcje z klientami.

Era czekania przez wieki, aż w call center pojawi się wolny specjalista, który rozwiąże problem klienta, dobiegła końca. Wszystko musi być szybkie, wygodne i wyglądać naturalnie.

Można to osiągnąć dzięki technologii przetwarzania języka naturalnego (NLP). Algorytm uczenia maszynowego można nauczyć rozpoznawania mowy lub tekstu i pobierania informacji o intencjach klienta. Następnie możliwe jest przeniesienie klienta do specjalisty ds. profilu przechodzącego przez call center, oszczędzając w ten sposób czas klienta i zwiększając jego doświadczenie interakcji z marką.

Rozwiązanie to można wdrożyć jako chatbota lub wirtualnego asystenta, gdy klient dzwoni na numer infolinii marki.

Segmentação de clientes e campanhas de marketing direccionadas

Innym obszarem zastosowania uczenia maszynowego jest marketing ukierunkowany. ML może analizować informacje o klientach i segmentować je zgodnie z ich zachowaniami zakupowymi. ML umożliwia marketerom przejście od ogólnych kampanii dla wszystkich klientów do bardziej dostosowanych ofert we właściwym czasie, które idealnie pasują do każdej grupy odbiorców i tworzą zachęty do zakupu. Przy tym samym budżecie marketingowym i przydzielonych zasobach można osiągnąć wyższą konwersję, zwiększyć sprzedaż i lojalność wobec marki.

Previsão e prevenção de churn

Zawsze mamy do czynienia z napływem klientów. Niektórzy z nich przychodzą, ale niektórzy odchodzą.

Z pomocą algorytmów uczenia maszynowego można analizować powody rezygnacji w bardziej szczegółowy sposób, segmentować je w klastry zgodnie z ich zachowaniami zakupowymi i identyfikować tych, którzy prawdopodobnie wkrótce zrezygnują. Co więcej, algorytm uczenia maszynowego może wykryć ledwo zauważalne (ręcznie) korelacje i wzorce, dając w ten sposób dokładniejszy obraz przyczyn rezygnacji. Dzięki temu można reagować na czas i dostarczać klientom bardziej dopasowane oferty, aby zminimalizować to nieprzyjemne zjawisko.

Monitorização das redes sociais através da PNL

Tworzenie kampanii marketingowych jest ważne, ale wiedza o tym, jak postrzegana jest Twoja marka, ma kluczowe znaczenie. Zbieranie informacji zwrotnych od klientów daje możliwość zobaczenia mocnych i słabych stron marki.

Informacje zwrotne mogą być zbierane bezpośrednio, ale istnieje również opcja otrzymywania informacji o postrzeganiu marki pośrednio, za pośrednictwem mediów społecznościowych.

Przypisując algorytm uczenia maszynowego do analizy postów i komentarzy w mediach społecznościowych dotyczących Twojej marki, możesz zbudować model tego, jak marka jest postrzegana przez potencjalnych i obecnych klientów: co im się w niej podoba, a co nie. Może mają jakiś pomysł na to, jak ją ulepszyć.

Wszystkie te informacje pomogą zrozumieć, czy zmierzasz we właściwym kierunku.

Zamiast konkluzji

Uczenie maszynowe jest więc naprawdę pomocne. Zwiększa przychody, pozwala lepiej zrozumieć, jak wszystko idzie, daje możliwość uniknięcia strat i optymalizacji procesów biznesowych… a nawet czatowania z klientami zamiast zmuszania ich do czekania w kolejce do następnego dostępnego specjalisty.

I choć wydaje się to dość kosztowne, to jednak się opłaci. Dlaczego więc nie wzmocnić biznesu tak uniwersalnym narzędziem, które może tak bardzo pomóc?

Dziękujemy za ocenę!
Dziękuję za komentarz!

Spis treści

Oceń ten artykuł:

4/5

4.9/5 (42 opinie)

Powiązane treści

Blogue
Blogue
Blogue
Tendências de desenvolvimento de software para pequenas coberturas 2024
Blogue
Cobertura pequena de tokenização de dados
Blogue
Pequena capa Inteligência artificial no mercado do diagnóstico (1)
Blogue
Blogue
Capa pequena A evolução das transacções P2P

Wyzwanie dla nas?

    Prosimy o podanie szczegółów projektu, czasu trwania, stosu technologicznego, potrzebnych specjalistów IT i innych istotnych informacji.
    Nagraj wiadomość głosową na temat projekt, który pomoże nam lepiej go zrozumieć
    W razie potrzeby dołącz dodatkowe dokumenty
    Imprimir um ficheiro

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Idiomas disponíveis: pdf, jpg, jpeg, png

    Informujemy, że po kliknięciu przycisku Wyślij Innowise będzie przetwarzać Twoje dane osobowe zgodnie z naszą Política de privacidade w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.

    Спасибо!

    Cобщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję!

    Wiadomość została wysłana.
    Processaremos o seu pedido e contactá-lo-emos o mais rapidamente possível.

    Dziękuję!

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    seta