Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Politykę Prywatności. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Grazie!

Il modulo è stato inviato con successo.
Ulteriori informazioni sono contenute nella vostra casella di posta elettronica.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

Dlaczego uczenie maszynowe jest dobre dla handlu detalicznego i e-Commerce?

Co przychodzi na myśl, gdy myślimy o uczeniu maszynowym? Może to samochód Tesli z autopilotem lub robot wyprodukowany przez Boston Dynamics? Większość powszechnie znanych rozwiązań z zakresu uczenia maszynowego (ML) to swego rodzaju fenomeny, które (przynajmniej na razie) trudno sobie wyobrazić jako użyteczne w naszym codziennym życiu.

Ale uczenie maszynowe to nie tylko takie ekskluzywne i (na razie) czasami nawet niepraktyczne produkty. W rzeczywistości prawie każda osoba na Ziemi dotyka ML niemal każdego dnia.

Mówimy o handlu detalicznym i e-Commerce. Kupujemy rzeczy każdego dnia, a większość z nich jest sprzedawana za pomocą różnych aplikacji Machine Learning.

Ale czy ML jest naprawdę pomocny i opłacalny dla takich firm? Znajdziemy odpowiedź na to pytanie (spoiler: zdecydowanie tak).

e-Commerce może czerpać wiele korzyści z rozwiązań opartych na uczeniu maszynowym.

Podnieś poziom obsługi klienta i sprzedaży dzięki inteligentniejszemu oprogramowaniu opartemu na danych.

Top 10 zastosowań ML dla biznesu w 2021 roku

Fondamentalmente, sono due le principali direzioni di lavoro del ML nel retail e nell'e-commerce: il miglioramento dei processi aziendali interni o l'esperienza del cliente. Ma se scaviamo un po' più a fondo nell'argomento, vedremo che il numero di applicazioni possibili per il Machine Learning non si riduce a queste due. Quindi, in particolare, dove può essere e viene utilizzato il ML?
Controllo delle scorte e gestione dell'inventario efficienti

Zarządzanie zapasami wpływa na przepływy finansowe firmy zarówno bezpośrednio, jak i pośrednio. Przykładowo, nadmierne gromadzenie zapasów powoduje, że gromadzą się one bez żadnego celu, co może nawet prowadzić do problemu martwych zapasów. Z kolei zbyt małe zapasy mogą skutkować kosztami alternatywnymi i rozczarowaniem klientów, którzy nie mogli znaleźć potrzebnego produktu, co zrujnuje wizerunek sprzedawcy.

Uczenie maszynowe może na przykład pomóc w rozwiązaniu szerokiego zakresu problemów związanych z inwentaryzacją:

Śledzenie produktów w celu uniknięcia niedopasowań lub pomyłek, które mogą znacząco wpłynąć na doświadczenia klientów;
Wdrożenie ML może również pomóc w optymalizacji całego zarządzania zapasami, dzięki czemu dostawa towarów będzie szybsza, co zwiększy zadowolenie klientów;

Wykorzystanie uczenia maszynowego w przewidywaniu stanów magazynowych pomaga uniknąć nadmiaru i niedoboru zapasów, co poprawi wady finansowe firmy, a także wrażenia klientów

Previsione della domanda e delle vendite più accurata
Questo punto è molto simile al precedente. L'analisi di dati storici, come le vendite degli ultimi 3-4 anni, tenendo conto di alcune variabili collaterali (come la situazione economica e politica) con il Machine Learning, permette di prevedere come andranno le vendite in futuro, consentendo di rendere i piani di produzione, logistica e marketing più precisi ed efficaci dal punto di vista dei costi. Inoltre, il ML permette di individuare le nuove tendenze del mercato prima che tutti i concorrenti se ne accorgano, in modo da ottenere un vantaggio in termini di tempo per implementare i cambiamenti o lanciare nuovi prodotti e guadagnare una quota di mercato più elevata.
Manutenzione predittiva

Kolejnym ważnym punktem dla każdej firmy jest stan sprzętu. Drobne usterki zdarzają się regularnie i to jest w porządku, nic nie jest idealne. Ale krytyczne awarie mogą mieć zbyt wysoką cenę.

Dlatego coraz więcej firm zaczyna praktykować konserwację predykcyjną. Dają one Machine Learning zestaw danych o tym, jak system działa w swojej normie, a po nauczeniu algorytm ostrzega o awariach, pozwalając firmie naprawić je, zanim będzie za późno.

Affinamento dei risultati dei motori di ricerca e ricerca visiva

W tej dziedzinie aplikacje ML są szeroko stosowane już od dłuższego czasu. Dzięki uczeniu maszynowemu wyszukiwarka może lepiej zrozumieć, czego w szczególności szuka klient, nawet jeśli zapytanie nie jest kompletne lub dokładne.

Technologia wyszukiwania wizualnego znacznie ułatwia użytkownikom znalezienie pożądanych towarów – wystarczy przesłać obraz i wybrać spośród podobnych opcji różnych marek. Może również pomóc w wykrywaniu piractwa i podróbek, aby zapobiec ich dystrybucji i utracie zysków.

Prezzi dinamici

Kiedy ostatnio zamawiałeś Ubera? Czy cena była wyższa ze względu na wysoki popyt?

Si tratta di prezzi dinamici. In base al rapporto tra autisti disponibili e ordini, l'applicazione calcola il prezzo. Se ci sono troppi ordini, Uber aumenta il prezzo di una corsa per portare più tassisti sulle strade in modo da soddisfare la domanda. È il sogno di un economista che diventa realtà, non è vero?

Applicando il ML alle decisioni sui prezzi, è possibile ottenere questo effetto, che avrà un impatto positivo sul flusso finanziario di un marchio. In sostanza, dopo aver appreso dai dati forniti, il ML sarà in grado di calcolare il prezzo perfetto per un determinato bene in un determinato momento, il che porta a un aumento delle vendite e dei ricavi.

Up-selling e cross-selling
Si tratta di raccomandazioni personalizzate. Quando un cliente visita un sito web e mette nel carrello un articolo (ad esempio, uno smartphone), il sistema molto probabilmente gli proporrà qualcosa di correlato ed eventualmente necessario (come una custodia e un vetro di protezione). Oppure, forse, il bene scelto ha un'alternativa migliore (c'è un altro smartphone in magazzino che ha caratteristiche migliori). Lasciando che il Machine Learning componga offerte per articoli correlati o possibili aggiornamenti, un'azienda può ottenere ricavi molto maggiori.
Esperienza immersiva per il cliente

W dzisiejszych czasach prowadzenie działalności gospodarczej to nie tylko świadczenie usług czy sprzedaż towarów. Chodzi również o to, w jaki sposób marka wchodzi w interakcje z klientami.

Era czekania przez wieki, aż w call center pojawi się wolny specjalista, który rozwiąże problem klienta, dobiegła końca. Wszystko musi być szybkie, wygodne i wyglądać naturalnie.

Można to osiągnąć dzięki technologii przetwarzania języka naturalnego (NLP). Algorytm uczenia maszynowego można nauczyć rozpoznawania mowy lub tekstu i pobierania informacji o intencjach klienta. Następnie możliwe jest przeniesienie klienta do specjalisty ds. profilu przechodzącego przez call center, oszczędzając w ten sposób czas klienta i zwiększając jego doświadczenie interakcji z marką.

Rozwiązanie to można wdrożyć jako chatbota lub wirtualnego asystenta, gdy klient dzwoni na numer infolinii marki.

Segmentazione dei clienti e campagne di marketing mirate

Innym obszarem zastosowania uczenia maszynowego jest marketing ukierunkowany. ML może analizować informacje o klientach i segmentować je zgodnie z ich zachowaniami zakupowymi. ML umożliwia marketerom przejście od ogólnych kampanii dla wszystkich klientów do bardziej dostosowanych ofert we właściwym czasie, które idealnie pasują do każdej grupy odbiorców i tworzą zachęty do zakupu. Przy tym samym budżecie marketingowym i przydzielonych zasobach można osiągnąć wyższą konwersję, zwiększyć sprzedaż i lojalność wobec marki.

Previsione e prevenzione del churn

Zawsze mamy do czynienia z napływem klientów. Niektórzy z nich przychodzą, ale niektórzy odchodzą.

Z pomocą algorytmów uczenia maszynowego można analizować powody rezygnacji w bardziej szczegółowy sposób, segmentować je w klastry zgodnie z ich zachowaniami zakupowymi i identyfikować tych, którzy prawdopodobnie wkrótce zrezygnują. Co więcej, algorytm uczenia maszynowego może wykryć ledwo zauważalne (ręcznie) korelacje i wzorce, dając w ten sposób dokładniejszy obraz przyczyn rezygnacji. Dzięki temu można reagować na czas i dostarczać klientom bardziej dopasowane oferty, aby zminimalizować to nieprzyjemne zjawisko.

Monitoraggio dei social media tramite NLP

Tworzenie kampanii marketingowych jest ważne, ale wiedza o tym, jak postrzegana jest Twoja marka, ma kluczowe znaczenie. Zbieranie informacji zwrotnych od klientów daje możliwość zobaczenia mocnych i słabych stron marki.

Informacje zwrotne mogą być zbierane bezpośrednio, ale istnieje również opcja otrzymywania informacji o postrzeganiu marki pośrednio, za pośrednictwem mediów społecznościowych.

Przypisując algorytm uczenia maszynowego do analizy postów i komentarzy w mediach społecznościowych dotyczących Twojej marki, możesz zbudować model tego, jak marka jest postrzegana przez potencjalnych i obecnych klientów: co im się w niej podoba, a co nie. Może mają jakiś pomysł na to, jak ją ulepszyć.

Wszystkie te informacje pomogą zrozumieć, czy zmierzasz we właściwym kierunku.

Zamiast konkluzji

Uczenie maszynowe jest więc naprawdę pomocne. Zwiększa przychody, pozwala lepiej zrozumieć, jak wszystko idzie, daje możliwość uniknięcia strat i optymalizacji procesów biznesowych… a nawet czatowania z klientami zamiast zmuszania ich do czekania w kolejce do następnego dostępnego specjalisty.

I choć wydaje się to dość kosztowne, to jednak się opłaci. Dlaczego więc nie wzmocnić biznesu tak uniwersalnym narzędziem, które może tak bardzo pomóc?

Dziękujemy za ocenę!
Dziękuję za komentarz!

Spis treści

Oceń ten artykuł:

4/5

4.9/5 (42 opinie)

Powiązane treści

Blog
Blog
Blog
Tendenze di sviluppo del software per piccole coperture 2024
Blog
Copertura piccola per la tokenizzazione dei dati
Blog
Copertina piccola L'intelligenza artificiale nel mercato della diagnostica (1)
Blog
Blog
Piccola copertina L'evoluzione delle transazioni P2P

Wyzwanie dla nas?

    Prosimy o podanie szczegółów projektu, czasu trwania, stosu technologicznego, potrzebnych specjalistów IT i innych istotnych informacji.
    Nagraj wiadomość głosową na temat
    In caso di necessità, i dati sono stati pubblicati sul sito web della società.
    Prezzo di vendita

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Visualizza i file: pdf, jpg, jpeg, png

    Informiamo che, a causa di un problema di sicurezza, Wyślij Innowise ha deciso di non fare ricorso a due o più dane osobowe, ma di non farle entrare in casa. Polityką prywatności w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują progetto di lavoro, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    I nostri clienti sono in grado di gestire le attività di progettazione e di gestione dei progetti in modo da poterli gestire al meglio.

    Спасибо!

    Cобщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję!

    Wiadomość została wysłana.
    Elaboreremo la vostra richiesta e vi ricontatteremo al più presto.

    Dziękuję!

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    freccia