Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Politykę Prywatności. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Merci !

Le formulaire a été soumis avec succès.
Vous trouverez de plus amples informations dans votre boîte aux lettres.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

Dlaczego uczenie maszynowe jest dobre dla handlu detalicznego i e-Commerce?

Co przychodzi na myśl, gdy myślimy o uczeniu maszynowym? Może to samochód Tesli z autopilotem lub robot wyprodukowany przez Boston Dynamics? Większość powszechnie znanych rozwiązań z zakresu uczenia maszynowego (ML) to swego rodzaju fenomeny, które (przynajmniej na razie) trudno sobie wyobrazić jako użyteczne w naszym codziennym życiu.

Ale uczenie maszynowe to nie tylko takie ekskluzywne i (na razie) czasami nawet niepraktyczne produkty. W rzeczywistości prawie każda osoba na Ziemi dotyka ML niemal każdego dnia.

Mówimy o handlu detalicznym i e-Commerce. Kupujemy rzeczy każdego dnia, a większość z nich jest sprzedawana za pomocą różnych aplikacji Machine Learning.

Ale czy ML jest naprawdę pomocny i opłacalny dla takich firm? Znajdziemy odpowiedź na to pytanie (spoiler: zdecydowanie tak).

e-Commerce może czerpać wiele korzyści z rozwiązań opartych na uczeniu maszynowym.

Podnieś poziom obsługi klienta i sprzedaży dzięki inteligentniejszemu oprogramowaniu opartemu na danych.

Top 10 zastosowań ML dla biznesu w 2021 roku

Fondamentalement, il y a deux directions principales de travail pour l'apprentissage automatique dans le commerce de détail et le commerce électronique: l'amélioration des processus commerciaux internes ou de l'expérience du client. Mais si nous creusons un peu le sujet, nous verrons que le nombre d'applications possibles de l'apprentissage automatique ne se résume pas à ces deux aspects. Alors, où l'apprentissage automatique peut-il être et est-il particulièrement utilisé?
Contrôle et gestion efficaces des stocks

Zarządzanie zapasami wpływa na przepływy finansowe firmy zarówno bezpośrednio, jak i pośrednio. Przykładowo, nadmierne gromadzenie zapasów powoduje, że gromadzą się one bez żadnego celu, co może nawet prowadzić do problemu martwych zapasów. Z kolei zbyt małe zapasy mogą skutkować kosztami alternatywnymi i rozczarowaniem klientów, którzy nie mogli znaleźć potrzebnego produktu, co zrujnuje wizerunek sprzedawcy.

Uczenie maszynowe może na przykład pomóc w rozwiązaniu szerokiego zakresu problemów związanych z inwentaryzacją:

Śledzenie produktów w celu uniknięcia niedopasowań lub pomyłek, które mogą znacząco wpłynąć na doświadczenia klientów;
Wdrożenie ML może również pomóc w optymalizacji całego zarządzania zapasami, dzięki czemu dostawa towarów będzie szybsza, co zwiększy zadowolenie klientów;

Wykorzystanie uczenia maszynowego w przewidywaniu stanów magazynowych pomaga uniknąć nadmiaru i niedoboru zapasów, co poprawi wady finansowe firmy, a także wrażenia klientów

Des prévisions de la demande et des ventes plus précises
Ce point ressemble beaucoup au précédent. L'analyse des données historiques, telles que les ventes réalisées au cours des 3 ou 4 dernières années, en tenant compte de certaines variables secondaires (comme la situation économique et politique), à l'aide de l'apprentissage automatique, permet de prédire l'évolution des ventes à l'avenir, ce qui permet d'élaborer des plans de production, de logistique et de marketing plus précis et plus rentables. De plus, l'apprentissage automatique permet de détecter les nouvelles tendances du marché avant que tous les concurrents ne les remarquent, ce qui vous donne l'avantage du temps pour mettre en œuvre des changements ou lancer de nouveaux produits et gagner une plus grande part de marché.
Maintenance prédictive

Kolejnym ważnym punktem dla każdej firmy jest stan sprzętu. Drobne usterki zdarzają się regularnie i to jest w porządku, nic nie jest idealne. Ale krytyczne awarie mogą mieć zbyt wysoką cenę.

Dlatego coraz więcej firm zaczyna praktykować konserwację predykcyjną. Dają one Machine Learning zestaw danych o tym, jak system działa w swojej normie, a po nauczeniu algorytm ostrzega o awariach, pozwalając firmie naprawić je, zanim będzie za późno.

Affinage des résultats des moteurs de recherche et recherche visuelle

W tej dziedzinie aplikacje ML są szeroko stosowane już od dłuższego czasu. Dzięki uczeniu maszynowemu wyszukiwarka może lepiej zrozumieć, czego w szczególności szuka klient, nawet jeśli zapytanie nie jest kompletne lub dokładne.

Technologia wyszukiwania wizualnego znacznie ułatwia użytkownikom znalezienie pożądanych towarów – wystarczy przesłać obraz i wybrać spośród podobnych opcji różnych marek. Może również pomóc w wykrywaniu piractwa i podróbek, aby zapobiec ich dystrybucji i utracie zysków.

Prix dynamique

Kiedy ostatnio zamawiałeś Ubera? Czy cena była wyższa ze względu na wysoki popyt?

C'est la tarification dynamique. En fonction du rapport entre les chauffeurs disponibles et les commandes, l'application calcule le prix. S'il y a trop de commandes, Uber augmente le prix de la course afin d'amener plus de chauffeurs de taxi sur les routes pour répondre à la demande. C'est le rêve d'un économiste qui devient réalité, n'est-ce pas?

En appliquant le ML aux décisions de tarification, il est possible d'obtenir un tel effet, qui aura un impact positif sur le flux financier d'une marque. Fondamentalement, après avoir appris sur les données fournies, le ML sera en mesure de calculer le prix parfait pour un bien particulier à un moment donné, ce qui entraîne une augmentation des ventes et des revenus.

Vente incitative et vente croisée
Il s'agit de recommandations personnalisées. Lorsqu'un client visite un site web et met un article dans son panier (par exemple, un smartphone), le système lui proposera très probablement quelque chose de connexe et éventuellement nécessaire (comme un étui et un verre de protection). Ou, peut-être, le bien choisi a une meilleure alternative (il y a un autre smartphone en stock qui a de meilleures caractéristiques). En laissant l'apprentissage automatique composer des offres pour des articles connexes ou des mises à niveau possibles, une entreprise peut obtenir des revenus beaucoup plus importants.
Une expérience client immersive

W dzisiejszych czasach prowadzenie działalności gospodarczej to nie tylko świadczenie usług czy sprzedaż towarów. Chodzi również o to, w jaki sposób marka wchodzi w interakcje z klientami.

Era czekania przez wieki, aż w call center pojawi się wolny specjalista, który rozwiąże problem klienta, dobiegła końca. Wszystko musi być szybkie, wygodne i wyglądać naturalnie.

Można to osiągnąć dzięki technologii przetwarzania języka naturalnego (NLP). Algorytm uczenia maszynowego można nauczyć rozpoznawania mowy lub tekstu i pobierania informacji o intencjach klienta. Następnie możliwe jest przeniesienie klienta do specjalisty ds. profilu przechodzącego przez call center, oszczędzając w ten sposób czas klienta i zwiększając jego doświadczenie interakcji z marką.

Rozwiązanie to można wdrożyć jako chatbota lub wirtualnego asystenta, gdy klient dzwoni na numer infolinii marki.

Segmentation de la clientèle et campagnes de marketing ciblées

Innym obszarem zastosowania uczenia maszynowego jest marketing ukierunkowany. ML może analizować informacje o klientach i segmentować je zgodnie z ich zachowaniami zakupowymi. ML umożliwia marketerom przejście od ogólnych kampanii dla wszystkich klientów do bardziej dostosowanych ofert we właściwym czasie, które idealnie pasują do każdej grupy odbiorców i tworzą zachęty do zakupu. Przy tym samym budżecie marketingowym i przydzielonych zasobach można osiągnąć wyższą konwersję, zwiększyć sprzedaż i lojalność wobec marki.

Prévision et prévention des désabonnements

Zawsze mamy do czynienia z napływem klientów. Niektórzy z nich przychodzą, ale niektórzy odchodzą.

Z pomocą algorytmów uczenia maszynowego można analizować powody rezygnacji w bardziej szczegółowy sposób, segmentować je w klastry zgodnie z ich zachowaniami zakupowymi i identyfikować tych, którzy prawdopodobnie wkrótce zrezygnują. Co więcej, algorytm uczenia maszynowego może wykryć ledwo zauważalne (ręcznie) korelacje i wzorce, dając w ten sposób dokładniejszy obraz przyczyn rezygnacji. Dzięki temu można reagować na czas i dostarczać klientom bardziej dopasowane oferty, aby zminimalizować to nieprzyjemne zjawisko.

Surveillance des médias sociaux à l'aide de la PNL

Tworzenie kampanii marketingowych jest ważne, ale wiedza o tym, jak postrzegana jest Twoja marka, ma kluczowe znaczenie. Zbieranie informacji zwrotnych od klientów daje możliwość zobaczenia mocnych i słabych stron marki.

Informacje zwrotne mogą być zbierane bezpośrednio, ale istnieje również opcja otrzymywania informacji o postrzeganiu marki pośrednio, za pośrednictwem mediów społecznościowych.

Przypisując algorytm uczenia maszynowego do analizy postów i komentarzy w mediach społecznościowych dotyczących Twojej marki, możesz zbudować model tego, jak marka jest postrzegana przez potencjalnych i obecnych klientów: co im się w niej podoba, a co nie. Może mają jakiś pomysł na to, jak ją ulepszyć.

Wszystkie te informacje pomogą zrozumieć, czy zmierzasz we właściwym kierunku.

Zamiast konkluzji

Uczenie maszynowe jest więc naprawdę pomocne. Zwiększa przychody, pozwala lepiej zrozumieć, jak wszystko idzie, daje możliwość uniknięcia strat i optymalizacji procesów biznesowych… a nawet czatowania z klientami zamiast zmuszania ich do czekania w kolejce do następnego dostępnego specjalisty.

I choć wydaje się to dość kosztowne, to jednak się opłaci. Dlaczego więc nie wzmocnić biznesu tak uniwersalnym narzędziem, które może tak bardzo pomóc?

Les droits de l'homme et les droits de l'homme dans le monde
Merci d'avoir pris le temps de vous informer !
auteur
Dmitry Nazarevich DIRECTEUR TECHNIQUE

Les services d'aide à l'enfance

Oceń ten artykuł :

4/5

4.9/5 (42 opinie)

Les droits d'auteur et les droits voisins

Blog
Blog
Blog
Tendances du développement des logiciels pour petites couvertures 2024
Blog
Tokenisation des données petite couverture
Blog
Petite couverture L'intelligence artificielle dans le marché du diagnostic (1)
Blog
Blog
Petite couverture L'évolution des transactions P2P

Pourquoi un pays en voie de développement ?

    Il s'agit d'un projet, d'une entreprise, d'une technologie, d'un spécialiste des technologies de l'information et de toute autre information utile.
    Nagraj wiadomość głosową na temat projekt, który pomoże nam lepiej go zrozumieć
    W razie potrzeby dołącz dodatkowe dokumenty
    Le projet Prześlij plik

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Ważne pliki : pdf, jpg, jpeg, png

    Informujemy, że po kliknięciu przycisku Wyślij Innowise będzie przetwarzać Twoje dane osobowe zgodnie z naszą Polityką prywatności w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej ?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Pour l'analyse des données, l'analyse et l'élaboration de programmes, les projets doivent être réalisés dans les délais impartis. projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.

    Спасибо !

    Cобщение отправлено.
    обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję !

    Wiadomość została wysłana.
    Nous traiterons votre demande et vous recontacterons dès que possible.

    Dziękuję !

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    flèche