Zostaw swoje dane kontaktowe, a my wyślemy Ci nasz przegląd e-mailem
Wyrażam zgodę na przetwarzanie moich danych osobowych w celu przesyłania spersonalizowanych materiałów marketingowych zgodnie z Regulaminem. Politykę Prywatności. Potwierdzając zgłoszenie, użytkownik wyraża zgodę na otrzymywanie materiałów marketingowych
Thank you!

The form has been successfully submitted.
Please find further information in your mailbox.

Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.
O nas
Innowise jest międzynarodową firmą tworzącą oprogramowanie w pełnym cyklu założona w 2007 roku. Jesteśmy zespołem ponad 2000+ specjalistów IT tworzących oprogramowanie dla innych profesjonalistów na całym świecie. profesjonalistów na całym świecie.

11% oszczędności na personelu utrzymania po zbudowaniu automatycznego robota do podlewania roślin

Dział robotyki Innowise opracował własnego inteligentnego robota do poruszania się po pomieszczeniach biurowych i podlewania roślin bez interwencji człowieka.

Klient

Branża
IT, Tworzenie oprogramowania na zamówienie
Region
UE
Klient
Innowise

Innowise jest globalnym dostawcą kompleksowych usług rozwoju oprogramowania z ponad 1500 specjalistami IT na pokładzie. Nasza firma świadczy usługi tworzenia oprogramowania pod klucz, realizując ponad 850 projektów dla klientów z 30 krajów na całym świecie.

Wyzwanie: Wewnętrzny projekt Innowise mający na celu zaprezentowanie naszej wiedzy z zakresu robotyki

Robotyka to jeden ze stale rozwijających się trendów we współczesnych realiach IT. Sieci cyfrowe i sztuczna inteligencja rozwijają się wykładniczo, biorąc pod uwagę szybki postęp technologiczny w tych dziedzinach. 

Koncentrując się na wykorzystaniu nowych technologii, Innowise przyjmuje zaawansowane rozwiązania w miarę ich pojawiania się na rynku. Jako dowód naszej doskonałości w tej dziedzinie, nasz dział robotyki stworzył od podstaw w pełni autonomicznego robota, który pomaga pracownikom w podlewaniu roślin. W tym autorskim projekcie zaprezentowaliśmy naszą wiedzę z zakresu robotyki klientom poszukującym Rozwiązania oparte na IoT w celu zautomatyzowania rutynowych zadań i wyeliminowania ludzkiego nadzoru.

Rozwiązanie: Samonawigujący robot podlewający rośliny z zaawansowanym systemem podnoszenia

Nasi sprawdzeni programiści robotyki zbudowali IRIS (Innowise Robotics Irrigation System) - autonomicznego, samonawigującego robota do podlewania roślin IoT w pomieszczeniach biurowych. Oprócz wdrożenia oprogramowania, takiego jak SLAM, ROS i LiDAR, zbudowaliśmy również sprzęt, w tym ruchomą platformę, zbiornik na wodę i system podnoszenia.

Mapowanie

Our robotics experts started by mapping office spaces to create a detailed IoT plant monitoring system, identifying the plants’ locations, obstacles, furniture, and other objects that may affect the robot’s movement. We ensured predictable and hassle-free routing across office rooms by utilizing SLAM technology, which simultaneously determines the robot’s location and creates an environment map using computer vision algorithms, LiDAR (laser scanners), and other sensor tools.

Nasi specjaliści od robotyki wykorzystali LiDAR podłączony do mikrokomputera Raspberry PI zamontowanego bezpośrednio na robocie do wykrywania przeszkód i identyfikacji roślin. ROS (Robotic Operating System) i główny komputer wykorzystują te informacje wizualne do przetwarzania danych nawigacyjnych, obliczania trasy i mapowania otoczenia biura.

During this stage, our team faced the challenge of limited visibility in detecting plain objects like tables, shelves, chairs, and other interior items that restrict the robot’s view or can be misidentified. Additionally, we had to deal with dynamic obstacles in an office environment since employees and moving objects suddenly change positions and directions, forcing the robot to make instant decisions to avoid collisions. Our project team used computer vision and machine learning algorithms to address this issue, including image segmentation, object detection, noise filtering, and other methods. Also, we equipped our autonomous assistant with motion planning algorithms such as Rapidly-exploring Random Trees (RRT) and A* (A-star), which considers the position and shape of obstacles in identifying the optimal path in real-time.

Wykrywanie roślin i kody QR

The project’s primary goal was training the robot to identify and locate objects on a map. Initially, we planned to use stereoscopic cameras to determine the plants’ location, calculate their position, and create a route. As a result of the brainstorming sessions, we devised an alternative scheme where the robot took a picture and recorded its coordinates in space. Robotics engineers used a neural network to find the plant in the frame, calculate its bounding box, and determine the flower’s direction. 

As part of image processing projects, bounding boxes serve as reference points for object detection and create collision boxes for them. Based on the robot’s coordinates, the camera’s orientation, and the flower’s location, we drew a ray connecting the robot’s position with the plant. Upon repeating this process many times, we obtained many rays intersecting at one point and detecting the plant that needed watering.

Nasi inżynierowie polegali na modelach wyszkolonych na zbiorach danych COCO i ImageNet, aby płynnie identyfikować kwiaty w doniczkach. W oparciu o ten model odfiltrowaliśmy wszystkie niepotrzebne klasy i opracowaliśmy niestandardowy detektor, który synchronizuje kierunek obwiedni ze współrzędnymi robota. Aby określić dokładne współrzędne przestrzenne pręta do podlewania, użyliśmy zestawu kamer i LiDAR.

Gdy robot wykryje roślinę, powinien zidentyfikować jej dokładną pozycję w przestrzeni i określić, czy należy ją podlać. W tym celu oznaczyliśmy wszystkie doniczki biurowe kodami QR połączonymi z bazami danych, w których przechowywana jest historia podlewania wszystkich roślin.

Ruchoma platforma

Jeśli chodzi o sprzęt, zespół robotyków zdecydował się na system modułowy, który obejmował ruchomą platformę zawierającą elektronikę, zbiornik na wodę, baterię i dwupoziomowy system windy. Wykorzystaliśmy aluminiowy profil formatu V-Slot do montażu ramy robota ze względu na jego trwałość i lekkość, umożliwiając lepszą manewrowość i mniejsze zużycie energii. 

Zamiast standardowych napędów różnicowych zaimplementowaliśmy koła wielokierunkowe w rogach robota, aby zapewnić płynną nawigację. Koła omni-wheels lub koła wielokierunkowe to małe dyski (rolki) na obwodzie, które mogą obracać się wokół własnej osi lub prostopadle, z łatwością napędzając cały system. W ten sposób robot może poruszać się w dowolnym kierunku bez obracania głównej konstrukcji, wykorzystując jedynie różnicę prędkości między poszczególnymi kołami.

Winda i nawadnianie

Flowers are displayed on employees’ desks, shelves, racks, high bookcases, and other places that are hard to access for employees. Rather than building a high robot, our experts assembled a lifting mechanism based on sliding rollers, eliminating the need for labor-intensive and economically inefficient bookcase-high construction. With OpenBuilds’ V-Slot profile parts, we fixed the elevator steps rigidly to each other with carriages and rollers that slide along the lifting mechanism. Ultimately, the carriages are moved by a belt stretched between a motor and tensioning unit mounted on the other side.

Na szczycie ostatniego stopnia windy zaimplementowaliśmy serwomotor, który rozwija pręt z włókna węglowego do podlewania kwiatów połączony z pompą perystaltyczną zainstalowaną w zbiorniku na wodę. W przeciwieństwie do standardowych pomp obrotowych, które są wrażliwe na objętość cieczy, zastosowaliśmy pompy perystaltyczne, które ściskają elastyczną rurkę przez rolki na obwodzie i wypychają ciecz. W porównaniu do standardowych pomp, mechanizmy te mają znacznie mniejszą prędkość pompowania, ale mogą podnosić ciecz na znacznie większą wysokość.

Technologie i narzędzia

Back-end
Python, Django(DRF), FastAPI, AWS IoT Core, pandas, Loki, Prometheus, Grafana, API Gateway, AWS (Route, Lambda, RDS, S3, SQS, SES, EKS, ECR)
Front-end
JavaScript, TypeScript, React, Redux, Leaflet, Webpack, Axios, Material UI, Cube.js, AWS CloudFront
Rozwiązania embedded
AVR, Raspberry Pi, SPI, UART, USB, I2C, HTTP, Solidworks, ROS, SLAM, LiDAR, Altium Designer
ML/DS
OpenCV, TensorFlow, TFLite, ONNX, NumPy
DevOps
Terraform, Weave, Docker. Docker Compose, Kubernetes, BitBucket Pipelines
Baza danych
PostgreSQL, AWS Timestream

Proces

Our robotics department followed the agile methodology throughout the project, working closely with machine learning, computer vision, and data science specialists to achieve desired results. We strived to deliver a comprehensive solution without scope creep, demonstrating industry-specific knowledge to potential customers in a complex and demanding area. During regular meetings, brainstorming sessions, and retrospective analyses, our robotics experts kept up with the project’s progress and addressed all issues. 

Obecnie testujemy system podlewania i wykrywania roślin oraz polski algorytm, który automatycznie znajduje i dociera do roślin biurowych na różnych wysokościach bez kolizji. Zidentyfikowaliśmy również problemy projektowe podczas opracowywania i stworzyliśmy szkic, aby rozwiązać te skutki uboczne przed zaprezentowaniem robota inwestorom. Ponadto nasi specjaliści opracowali bazę techniczną dla robota, w tym stację ładującą podłączoną do sieci wodociągowej i sieci 220 V, umożliwiającą robotowi ładowanie akumulatora pokładowego i automatyczne uzupełnianie wbudowanego zbiornika na wodę.

Zespół

2
Programiści back-end
2
Programiści front-end
1
Kierownik projektu
1
Analityk biznesowy
1
Architekt oprogramowania
1
Kierownik zespołu
2
Inżynierowie sprzętu
2
Programiści oprogramowania układowego
1
Inżynier DevOps
1
Inżynier ML/DS
1
3D Modeller
1
Inżynier projektu
team-innowise

Wyniki: 34% zmniejszył uszkodzenia roślin dzięki inteligentnemu systemowi nawadniania roślin IoT

Innowise’s robotics team has built an IRIS  – an automated IoT-driven robot to water plants and navigate office surroundings. We equipped the device with an advanced mapping system to build accurate routes through SLAM technology, LiDAR (laser scanners), and other sensors. Additionally, our engineers empowerуed the robot with an elevating mechanism based on sliding rollers and a carbon fibre rod on top.

As a result, we designed a watering system that allows the plants to be watered regularly without human interaction. IRIS ensures the flowers’ health, improving air quality and promoting a green atmosphere in the office. Furthermore, it reduces the workload of employees who previously had to water plants manually, allowing them to focus on their core responsibilities without being distracted by routine tasks. 

Czas trwania projektu
  • Luty 2023 r. - w trakcie realizacji

11%

oszczędności na personelu konserwacyjnym

34%

zmniejszone uszkodzenia roślin

Potrzebujesz rozwiązania technologicznego? Skontaktuj się z nami!

    Prosimy o podanie szczegółów projektu, czasu trwania, stosu technologicznego, potrzebnych specjalistów IT i innych istotnych informacji.
    Nagraj wiadomość głosową na temat projekt, który pomoże nam lepiej go zrozumieć
    W razie potrzeby dołącz dodatkowe dokumenty
    Prześlij plik

    Można załączyć maksymalnie 1 plik o łącznej wielkości 2 MB. Ważne pliki: pdf, jpg, jpeg, png

    Informujemy, że po kliknięciu przycisku Wyślij Innowise będzie przetwarzać Twoje dane osobowe zgodnie z naszą Polityką prywatności w celu dostarczenia Ci odpowiednich informacji.

    Co będzie dalej?

    1

    Po otrzymaniu i przetworzeniu Twojego zgłoszenia skontaktujemy się z Tobą wkrótce, aby wyszczególnić potrzeby projektu i podpisać umowę o zachowaniu poufności, aby zapewnić poufność informacji.

    2

    Po przeanalizowaniu wymagań, nasi analitycy i programiści opracowują projekt z zakresem prac, wielkością zespołu, czasem i kosztami szacunki.

    3

    Umówimy się z Tobą na spotkanie, aby omówić ofertę i dojść do porozumienia porozumienia.

    4

    Podpisujemy umowę i rozpoczynamy pracę nad projektem tak szybko, jak to możliwe.

    Спасибо!

    Cобщение отправлено.
    Мы обработаем ваш запрос и свяжемся с вами в кратчайшие сроки.

    Dziękuję!

    Wiadomość została wysłana.
    We’ll process your request and contact you back as soon as possible.

    Dziękuję!

    Wiadomość została wysłana. 

    Przetworzymy Twoją prośbę i skontaktujemy się z Tobą tak szybko, jak to możliwe.

    arrow